SURESH

GYAN VIHAR

Il V E R S I TY
Accredlted by NAAC with ‘A+’ Grade

Bachelor of Computer Application
(B.C.A)

Programming in Visual Basic
Semester-iv

Author- Manish Somavanshl (Bhosale)

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education
Mahal, Jagatpura, Jaipur-302025

EDITORIAL BOARD (CDOE, SGVU)

Dr (Prof.) T.K. Jain Dr. Manish Dwivedi

Director, CDOE, SGVU Associate Professor é“Dy, Director,
CDOE, SGVU

Dr. Dev Brat Gupta

Associate Professor (SILS) & Academic Mr. Manvendra Narayan Mishra

Head, CDOE, SGVU Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU Ms. Shreya Mathur
Assistant Professor, CDOE, SGVU
Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU Mr. Ashphaq Ahmad
Assistant Professor, CDOE, SGVU

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046
Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU
All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Led.

Printed at :

Syllabus
Programming in Visual Basic

Learning Objectives

- learn features of Visual Basic and concept of programming.

- Get familiar with VB Interfaces, viz. Menus, Toolbar, Toolbox, different VB windows

- Work with VB controls to place them to VB forms and make executable files.

- Learn to get concept of algorithm and flowchart and write simple programs by using
different types of control and loop statements

UNIT-I

Introduction to Visual Basic, Integrated development environment features — Forums — Controls —
Events — Methods — Properties - Uses of Property Window — Code Window (Code Behind File) —
Variable declaration.

UNIT-II

Scope of Variables — Constant — Array — Loops in Visual Basic: For ... Next, While, Do...While
- Select statements: if...end if - if...else if...end if - Select...Case End Case —

UNIT-111

Standard Controls: Form - Text Box — Command Button — Label Box — Check Box — Frame
Control — Combo Box — List Box — Radio Button - Image Control - Picture Box — Timer.

UNIT-1V

File System — Drive, DirList, File List Box — Introduction to Built-in-Active X control tool bar —
Tree view — Menu Editor — Command dialog control — Rich Text Box.

UNIT-V

Introduction to Database — MS Access — Data Grid (Accessing Data Base data) — Open data base
connectivity — Introduction to Dot Net: IDE — Execution Procedures — CLR — CTS. Text and

Reference

- Mastering Visual Basic 6 — BPB Publications, New Delhi.

- Mohammed Azam, Programming with Visual basic 6.0 — Vikas Publishing House.

- Test Your Vh.Net Skills: Language Elements Part 1 Paperback — 1 Dec 2000 by Yashavant
P. Kanetkar (Author), Asang Dani, BPB Publications, New Delhi.

Getting Started with V.B. 34

1. IUIOAUCHON. ..ot oo eoeoeooe oo 1-1
2. Installing of VISUal BESIC 6.0................coooeeceerrenrroereoeeees oo 1-3
3. Object Oriented CONCEPL..............cuumemrveemeeereeeereeemsoesooooooo Somavanshi 1-9
4, Event Driven Programming Language...........co.coouueuvoeeeneeeeeee .. 1-10
4.1 Events Related with Mouse and Keyboard 1-11
5. Reviewing the Basics of Forms and Controls..............c.ccccoeovovvveooo 1-12
6. WOrKing With PrOPEITIES...........voocreeeeveeree e 1-23
6.1 Studying the Events of a Form 1-25
6.2 Working Code for Events 1-27
6.3 Planning the Design 1-30
Constants, Variables, Operators, Control Structure, Looping 70
1. IUOGUCHON.cococ e oo 2-1
2. DB AYPESoooo st 2-2
2.1 Built in Data Types 2-2
22 User Defined Data Types (UDT) 2-4
3. VBIBDIESccooo ettt eeooeoeeeeeeoe 2-6
3.1 Rules to Define Variable 2-6
32 Declaring Variable 2-7
33 Using Option Explicit Statement 2-7 Somavanshi
34 Variable Scope 2-8
35 Variable Duration 2-9
4, COMSIANE ...ttt e eeoese e 2-10
5. OPEIBIOTScooe et eeeeeee e oo oo sooooosee 2-11
5.1 Arithmetical Operators 2-12
52 Relational Operators 2-13
53 Logical Operators 2-13
54 Differences between the Two Concatenation Operators 2-14
55 Precedence of the Operators 2-15
6. EXDIESSION. ...ooooo et es oo 2-16
7. COMMENLS ...t ecsennes s 2-17
8. CONMION SHUCKUIES.........ooooe oo 2-18
81 If 2-18
8.2 Using If...Then...Else Statements 2-20
8.3 Using Nested If Statements 2-24
84 Select Case 2-25
9. LSO 2-28
9.1 Doloop 2-29
9.2 For — Next 2-36
9.3 While - Wend Loop 2-39
94 Nesting Control Structures 2-40
100 AMTBY et eoes oo 242

10.1 Declaring Array 2-42

Programming in Visual Basic eje 1621

10.2 Single Dimensional Arrays 2-44

10.3 Muitidimensional Array 2-45
10.4 Dynamic Amray 2-47
10.5 Control Array 2-48
11. Functions (Built in and user defined) ... 2-52
12. User Defined FUNCHONSccvirieriieieeiceie ettt s e et r s st e sam e s b s n s ebanens 2-59
SOIVEA PrOGTAIMSocvoverieeieier et r e essais bbb s bbb bbb sh bbb et 2-61
3. Working with Control 38
1. T3 L1 o[w31 o1 s TOUURURUR OO PP T PO P PPPIV P PP 3-1
2. Adding Controls 0N FOML......ccooiviiiieirii st s s 32
3. Working with Properties and Methods of Each COontrol ... 3-3
4, Creating MDI APPHCALIONS ..ottt 3-22
4.1 Working with Multiple Forms 3-23
4.2 Loading, Showing and Hiding Forms ~ 3-26
4.3] - fai
43 Groatng Fomsin Code. e Somavansh, Jain
4.5 Amanging MDI Child Window 3-29
4.6 Opening new MDI Child Window 3-31
4.7 Creating Properties in a Form 3-32
4.8 Creating a Method in afoom 3-33
SOIVE PrOQIAIMSoviietreriieiereneee e etes s os et es s st st r bbb e b e R b a bt s 3-34
4. Working with ActiveX Controls and Menus .70
1. TTaTine o L1 w1l o 12 IOUTOURU RO P OO OO PP PSP P PSPPI 4-1
2. Creating Status Bar for your PTOgram ...t 4-2
3. WOrKing With Progress Bar ...t st 4-6
4. Working with Toolbar and Setting up the Image List CONtrols ... 4-9
5. Study of Different Dialog BOXES...........ccoiiieriinmiiniinnin s 4-22
6. Creating a Menu SYSIeM ...t 4-32
.1 Designing the Men ;
52 Croating ine Mend with the Menu Editor 436 Somavansh
6.3 Adding Shortcut and Access Keys to Menu ltems
7. Creating and Accessing Popup MENU ... 4-49
7.1 Creating Pop-up Menu 4-50
8. Adding or Modifying Menu at Run Time (Dynamic Menu) ... 4-57
9. Adding Menu Item for MDI Child FOMM ..o s 4-63
SOIVEA PIOGIAMSoeecreeere e ittt stns st er e as e e e s RS S S s s 4-64
5. Working with Database 42
1. (133 E 430 10 oL o) 1 PRUTURURRR OO OO OO U P PP TR PP SR LIPPLLRRES 5-1
2. DA CONIIOLeeeeeeeeeeeeee et iesreeertestssstessaeesaeaasasseaeeseesss s s bs saab e s s Rbe s R T e s e aan e s e s s hE s e b s e R s et e st e e s an s 5-2
2.1 Studying the Properties and Methods of Data Control ~ 5-3
2.2 Connectivity with MS-Access and Operations of Database through Coding 55
3. ADO Data CONIrOL......eceeeeeeeeeiieieeecteeeseeer e eeterserssssessns s orr e e s s rarrer ks setr s oL eoae s iR e s b e e st a e 5-8
3.1 Connecting with Oracle 5-13
3.2 Report Generation 5-24 Somavanshi
4. Developing ADO Application through ADODC and Coding..............c....... bmmmmsmsremmssrsesered., 5-31
SOIVEA PLOGIAMScocvieierereereetceeae et es e ra s st sesb b es st s bR e b d st b 5-35
% e K
Programming in Visual Basic oiie (621

Chapten 1
GETTING STARTED

WiTH V.B.

1. Introduction

Visual Basic 6.0 is one of the most popular programming languages in the market today, created by
Microsoft for building stand alone Window-based GUI applications. VB is used for multiple purpose
in development. We can develop from a lightweight application to a full-fledged enterprise
development with VB 6. VB is an object oriented programming development system. It has many
predefined controls like menus, listbox, textbox etc. With these controls you can create a user interface
for a particular application and can write a code to carry out the actions associated with each control on
the form. ’

VB6 provides MDI i.e. Multiple Document Interface whereas before VB6 there was SDI i.e. Single
Document Interface. It means all windows are a part of desktop. We can move them separately
anywhere on the screen. There is no parent window for all the windows. From VB 5 there is MDI
environment. VB 6 gives you a complete windows application development system in one package.
It includes tools you can use to write and compile help files, ActiveX controls and even Internet
applications VB itself is a windows application. You will use running VB programs to create other
programs. VB includes controls that are tools on the toolbox window that you place on the form, to
interact with the user and control the program flow. A program is a set of instructions that makes the
computer do some work such as perform; accounting. A project is a collection of files you create to
compose your windows application. An application is a collection of one or more files that compile
into an executable program.

Started with V.8,

Visual Basic- GUI Application

Graphical User Interface (GUI) is a program interface that takes
advantage of the computer's graphics capabilities to make the
program easier to use. Well-designed graphical user interfaces can
free the user from learning complex command languages. On the
other hand, many users find that they work more effectively with a
command-driven interface, especially if they already know the
command language.

Graphical user interfaces, such as Visual Basic, feature the following basic components:

ii.

ifi.

iv.

vi.

Pointer: A symbol that appears on the display screen and that you move to select objects and
commands. Usually, the pointer appears as a small angled arrow. Text -processing
applications, however, use an I-beam pointer that is shaped like a capital L.

Pointing device: A device, such as a mouse or trackball, that enables you to select objects on
the display screen.

Icons: Small pictures that represent commands, files, or windows. By moving the pointer to
the icon and pressing a mouse button, you can execute a command or convert the icon into a
window. You can also move the icons around the display screen as if they were real objects on
your desk.

Desktop: The area on the display screen where icons are grouped is often referred to as the
desktop because the icons are intended to represent real objects on a real desktop.

Windows: You can divide the screen into different areas. In each window, you can run a different
program or display a different file. You can move windows around the display screen, and change
their shape and size at will.

Menus: Most graphical user interfaces let you execute commands by selecting a choice from a
menu.

In addition to their visual components, graphical user interfaces also make it easier to move data
from one application to another. A true GUI includes standard formats for representing text and
graphics. Because the formats are well-defined, different programs that run under a common GUI
can share data. This makes it possible, for example, to copy a graph created by a spreadsheet
program into a document created by a word processor.

2. Installing of Visual Basic 6.0

Before you start working on Visual basic you need to install it on your PC. Lets see the process of
installation of Visual Basic 6 on your computer system. Visual basic comes only on CDs. It is a part
of visual studio product. There are few steps you have to follow while installing VB.

L. Insert Visual Studio CD. This CD contains automated “setup.exe” program. You need to run
this setup to install VB. ' :

2. Run setup.exe. When you run setup program it will ask your name and the name of the
company.

3. Once you start running the setup it popsup some windows asking few questions. If you are the

first user, without making any changes, click on the next button in the dialog box.’

When you start running setup following window will appear on the screen. If you are the first
user click on the “NEXT” command button on the screen shown in the F. igure 1.1

Figure 1.1

4. After clicking NEXT button, now setup will ask you to accept an agreement. There are two
option buttons on the screen as shown in the Figure 1.2.

i “l accept the agreement” and

il. “I don’t accept the agreement”. If you agree, select the 7 accept the agreement” option
button.

Figure 1.2

5. The next window that appears is the “Product Number and User ID” window. Here you are
supposed to enter Product ID number in the first text box, your name and your Company
name. After entering this information click on the NEXT button as shown in Figure 1.3.

Figure 1.3

6. Now installing wizard will ask you to select for edition. By default “Install Visual Studio 6.0
Professional Edition” option is selected. If it is not then select accordingly desired edition and
go to NEXT window. (Refer Figure 1.4).

Figure 1.4

7. After selecting edition, installation wizard will start installing the files. At this step you need
to select the location for those files. You can choose the location of the file that is common
among visual studio 6.0 application. The common files should be stored in the folder called
“common”. If you wish to change the default location you may click the browse button to
explore the location from your hard drive disk and choose the new location (try to follow the
default settings as shown in Figure 1.5) and click on the NEXT button to proceed further.

Figure 1.5

8. Read the license agreement and select the “Continue” button to start installing Visual Studio
6.0, or select “Exit Setup” button to come out from the setup wizard. (Figure 1.6)

Figure 1.6

9. Note down your product ID if you are using licensed product of the Visual studio 6.0, and then
~lick on the “OK” button.

Figure 1.7

10. Now in the Figure 1.8 you can see three buttons. The large icon or button is to start the
installation; the “Change Folder” button is to change the path of visual basic. By default
wizard will take “C:\Program File\...” path. If you wish to change the path you can do that by

clicking “Change Folder” button and if you want to exit the setup click the button “Exit
Setup” at the bottom of the screen.

Fisuad Niudie 6.0 Pr

Figure 1.8

1. At this stage wizard will give you the list of options which you can install. You need to select
the Item(s) you want to install. You can choose multiple items to install. Along with this you
can see different buttons on the screen. You can select all the options at a time by clicking
“Select All” button. With “change folder” button you can change the default folder where
Visual studio will install all selected items. “Continue” will continue the installation process
and “Cancel” will cancel the process of installation. (Figure 1.9)

In our case make sure that the first option in the list i.e. “Microsoft Visual Basic 6.0” is
selected. And then click on the “Continue” button to continue the installation of VB.

Figure 1.9

12. At this step select “Register Environment Variables” check box. Click “OK” and go ahead.
(Figure 1.10)

Visual Stedio 6.8 Professional Setup

Figure 1.10

13. This is the last step of installation. In Figure 1.11 you can see the progress bar of the
installation process. Once it reaches 100% you will get Microsoft Visual Basic 6.0 installed on
your PC. If required restart the PC. Now you are ready to use VB.

Figure 1.11

14. To open VB, select Start — Programs — Microsoft Visual Studio — Microsoft Visual Basic
6.0

3. Object Oriented Concept

Object Oriented Programming (OOP) is a more advanced aspect of
visual basic. Object Oriented Programming is quite simple, in fact it
is probably simpler for those who have never programmed before
than for those with long experience of traditional structure
programming language like FORTRAN / PASCAL.

In Object Oriented Programming style you break a problem down into small parts and solve them
individually. Here everything is considered as an object and every variable or function is a property
of an object.

Object Oriented Programming (OOP) is more than just a programming concept. It is a way of
thinking about applications. It is learning to think of applications not as procedures, but objects and
real entities. In programming, an object is a run time instance of code and data that comprise some
sort of logical grouping, usually referred to as a business entity. Another great advantage is improved
code readability, reliability, and adaptability. For example, You don’t have to know how a remote
control works, you just need to know the number of channel you want to watch. Like wise in case of
OOPs you can directly use an object without knowing the structure of that object.

In Visual Basic, we use classes to define components. Once created, and populated with data, a class
becomes an object with properties and methods. So far, so good, Visual Basic can do classes with
properties and methods.

Object oriented design concepts.

1. Inheritance: Inheritance is the process by which one object can acquire the properties of
another object without rewriting the code. It means that we can add additional features to an
existing class without modifying it. This is possible by deriving a new class from the existing
one. This is important because it supports the concept of classification or reusability.

Inheritance allows one class to inherit the functionality of another without having to rewrite
the code. This is similar to having some qualities of its parent, while still functioning and
appearing quite unique. Inheritance as a programming concept works the same way.

2. Polymorphism: Polymorphism is a Greek term, poly means ‘many’ and morph means
‘forms/bodies’; means the ability to take more than one form. An operation may exhibit
different behaviors in different instances. The behaviors depend upon the types of data used in
the operation. The polymorphism is implemented using overloading. We implement
polymorphism in Visual Basic, by overriding methods. ‘

3. Aggregation: Aggregation is a sort of symbiotic relationship between objects. In aggregation,
a host object acts as a liaison between the outside world and an inner object. This can be
accomplished in several ways. One is by having both objects implement the same interface.

Ny

Since they contain the same interface, when a host object is called, it can in turn make a call to
the inner component’s same method (delegation), in effect, forwarding the call. Another
technique allows the method of the inner component to be directly exposed to the outside
world (aggregation).

Encapsulation: Encapsulation is a method of data abstraction that allows us to change data
through a representation, not the real thing. In Visual Basic, we can accomplish this using
properties and methods.

Overloading: Overloading allows us to provide multiple procedures that have the same name
and do similar things. Overloading allows varying functionality of the same method by
providing more than one signature. For example, with both methods, you could create several
objects that have the same interface and different implementation, but with overloading, you
can accomplish this in totally different ways. Instead of overriding, thus rewriting the method
for each object, you could provide several methods named the same, but with different
parameters in the same interface. Visual Basic doesn’t support overloading methods.

Event Driven Programming Language

Programmin
Explain with

Visual basic uses an event-driven architecture. For example,
whenever the user clicks one of the mouse buttons, or types in a key
on the keyboard, a signal called an event is created. The Windows
system then checks event details such as event location, where the
mouse click has occurred and then notifies the appropriate widget to
take appropriate action.

Apr.2013 -

VB supports an event driven programming style. You will
experience this in this book step by step. In event—driven
programming you will think according to the user action. i.e. “how
and what should happen when user do this”.

Then you would write the program to perform that task. This is called event-driven programming.
You program according to what events the user would generate. Moving mouse, dragging a picture,
clicking a button, and typing text are all events.

Consider the following example: Let's create a simple button called ‘CmdClick’ and write the code
that will be executed when the button is clicked. The code below simply changes the caption of the
button, when the button is clicked.

Private Sub CmdClick click ()

tmdclick Caption = "This is Button"

4.1

There are a number of event that we can use, for example,
double-click, mouse move, mouse up and down events, got focus
and lost focus events, key up and down events, drag and drop events,

form load etc.

The program’s response to an action taken by the user is referred to
as an event. The event is initiated by user and it is responded by the
program. This complete process is called an event, and the code

Figure 1.12

written for this event to happen is called as event procedure.

Events Related with Mouse and Keyboard

‘Apr.2012-8M

. Discuss various ¢
 related with
Keyboard.

The MouseDown, MouseUp, and MouseMove events enable the applications to respond to both the
location and the state of the mouse.These mouse events are recognized by most controls.

MouseDown | Occurs when the user presses any mouse button.
MouseUp Occurs when the user releases any mouse button.
MouseMove | Occurs each time the mouse pointer is moved to a new point on the screen.

A form can recognize a mouse event when the pointer is over a part of the form where there are no
controls. A control can recognize a mouse event when the pointer is over the control.

When the user holds down a mouse button, the object continues to recognize all mouse events until
the user releases the button. This is true even when the pointer is moved off the object.

Keyboard events: Visual Basic is an event driven programming language. It supports various mouse
and keyboard events. The key event occurs when the user presses any key that corresponds to a

certain alphanumeric value or an action such as enter, spacing, backspace or so on. Each of those
* values or actions are represented by a set of codes known as the ASCII. Using the keyboard events,
user can program different controls and forms to respond to various key actions.

For example: KeyUp, KeyDown, KeyPress

5. Reviewing the Basics of Forms and Controls

VB is popular for its simplicity. The most attractive thing about VB is its Graphical User Interface
(GUI). It uses all the powerful features of the windows and provides powerful user interface. VB has
an IDE i.e. Integrated Development Environment in which you can develop, run and debug your
application. The components of an IDE are tool box, property window, form layout window, code
window etc.

In this section, we will study all about the VB environment. VB6 has MDI i.e. Multiple Document
Interface environment. That means all the windows are part of the large window called as parent
window and others are child window. We cannot move child window outside of the parent window.

Let’s have a tour to Visual Basic IDE

After installing Visual Basic, when you start it a dialog box asking about New Project type will
appear. In that you can see different Tabs. Like New, Existing and Recent. New tab displays list of
different types of projects. Existing tab will show the list of already existing project list on your disk.
Recent will show list of recently used project. The screen will be as follows.

New Tab
Standard EXE

Figure 1.13

In this New Project dialog box you have two options i.e. either you open an existing project or you
can create new one. Here we will create new project therefore select New — Standard EXE and click

on Open button. Standard EXE creates stand alone programs having .exe extension. This can be used
like an independent application. After selecting open option, now you have VB’s User interface with
all required windows opened. This is called as IDE (Integrated Development Environment). Let’s
have a look on the IDE. Now your screen will look like this Figure 1.14.

Title Bar Main Menu Toolbar

Tool Box

Figure 1.14

IDE is the screen that appears first when you start visual basic. All the necessary windows you need
to develop any application are integrated under single window therefore it is called as Integrated
Development Environment. The different components of IDE are Menu Bar, Title Bar, Tool Bar,
Tool Box Form (placeholder of all the controls), property window, project window, form layout
window etc. which are arranged in a elegant way. You can change this IDE arrangement up to some
extent to work according to your requirement. i.e. you can close or keep open the windows as per
your preference. All the windows in this IDE are dockable at certain location of the screen and can
be interlocked with each other. As you can see in the above screen. One window is docked with
another window. For example, the project explorer window and the properties window are
interlocked with each other. This default arrangement of the components is comfortable for the user
to work. Or you can change this style and customize the IDE as you wish.

Now we will discuss all the components in details

1. Title Bar: At the top of the screen is the Title Bar. The title bar gives us information about
what program we’re using and what Visual Basic program we are working with.

2. Main Menu: Below the title bar is the Main Menu. This menu is very much similar to the
menu in MS Word, Excel etc. If you have experience of working with these tools you must be

riod with V..

familiar with use of Menu and its different options. You can perform all types of operations
using this menu.

Tool Bar: Under the main menu is the Toolbar. You can see small icons/buttons with pictures.
These buttons are the alternate to the options in main menu. To understand the meaning and
use of that button you just put the cursor over the button for a while; a little help called ‘tool
tip text” will pop up and tell you what that particular button does. Like many windows
application, Visual Basic has multiple toolbars available. You can easily customize your own
toolbar to suit your needs. There are four built-in toolbars available in VB. They are Standard,
Edit, Debug, and Form Editor. (Select View — Toolbar Menu to open any tool bar) By
default, the standard toolbar appears immediately below the menu bar. All the tools bars looks
like this

Standard Tool Bar

Edit Tool Bar

—
zx,]

]

Debug Tool Bar

%

Form Editor

Project Explorer Window: The project explorer window also called the project window
gives you a tree-structured or list view of all the files which make the project. Through this
project window you will get a bird eye view of your entire application. This window displays
forms, modules, classes etc. When you want to work with a particular part of the loaded
application, double click the component in the project window to activate and bring that
component into foreground. You can also add or remove the items like forms, class modules
from the project window by right-clicking in the window. In the project window (Figure 1.15) you
can see three buttons named as View Code, View Object, Toggle Folder below the title bar. Using
these buttons you can switch between different views. The left most button—View code button
opens objects code window. Middle button—View object button opens the object itself and the

last button— Toggle Folder opens and closes folders in the project window. You can toggle on
the folder view to separate different components in different folders. This is useful in case of
very big application where you have many modules, forms and classes.

Title Bar

Figure 1.15

Properties Window: In VB every control has properties. Some of the properties are common
for all controls whereas all the controls have some unique properties which makes that contro}
different from other controls. Properties define the appearance and the behavior of the control
to which they are associated. The properties of the control can be changed from this property
window. The property window shows all the property and detailed descriptive information of
the control, which is selected. (Figure 1.16) The title bar shows the name of the control which
is currently selected and which properties have been shown in the property window. Below the
title bar is Control list box which shows the control name and the type of control (e.g. Form3
Form). You can see two tabs below the control list box that are dlphabetic and Categorized.
Both tabs contain same properties but in different manner. Alphabetic tab provides properties
in alphanumeric ascending arrangement and categorized tab groups the properties on the basis
of appearance and the behavior of the control to which they are associated. But I will suggest
you to use alphabetic arrangement. Because all the properties are arranged alphabetically so it
is easy to search or locate any property in this tab. The properties are displayed in two
columns. The first column shows the property name and second column shows the current
value of the property. This is called setting box. The properties of the control can be changed
from the property window. Changing properties through property window are called as design
time setting. To change the property just select the right hand side value of the property. Either
you can type the value or VB will popup a list box to select the value. You can select any of
the value from that list. At the bottom of the property window there is a note which shows the
description of the currently selected property.

Title Bar

Category
wise list

Control list

Alphabetic list Property Value

Property Name

Short description of
the property

Figure 1.16: Property Window

6. Form Layout Window: The Form Layout Window (Figure 1.17) is used to position your
form as you want to them appear on the screen when you run your application. To open form
layout window on the screen, click View Menu — Form Layout Window option. Now, in the
Form Layout Window you can see your forms. You can position any of the form anywhere on
the screen. Click on the form in the little screen and drag it to the desired position. This
establishes the location of the form on your computer monitor when you run the application.
In the following Figure 1.17 you can see three forms. These forms are from same project. You
can set different location for each form.

Figure 1.17: Form Layout Window

7. Tool Box: Tool box is located at the left of the screen. It contains all the controls which are
used to build your application. The controls you see on the tool box are default controls. They

i

are installed at the time of installation of VB. If the toolbox window is not present on the

screen, click View on the main menu, then Toolbox. The toolbox is simply a library of

controls which you can place on your application. Once you've placed all the controls you

need onto your applications forms, you can hide the toolbox to make room for working in the

other elements of IDE. The Toolbox window is probably the first window you'll become

familiar with because it lets you visually create the user interface for your applications. If you

are working first time in Visual Basic then it is necessary that you should spend more time to

understand all these controls and their properties. Properties are shown in the property

window. As we have just now discussed in the above section. You can add more controls on .
the tool box. '

To add more controls on tool box follow these steps

. Select Project Menu — Components. (Figure 1.18)
. From the dialog box select the control which you want to add.
. Click on the OK button.

Figure 1.18: Components Window

Picture Box
E— Text Box

Command Button

Checkbox

Combo box
Horizontal Scroll bar
Timer

Directory list box
Shape

Image

OLE

- Option Button

List Box

———Vertical Scroll Bar

Drive List Box

File List Box

Line

Data

Figure 1.19: Tool Box

e Pointer isn't a control; click this

The Visual Basic Controls refer Figure 1.19 while you read the descriptions for the control.

Option Button controls are always used in

o icon when you want to select |[-
] controls already on the form rather] _grct);:ps, and y?u ;:_an select only one control
than create new ones. in the group at a time.
The Label control is used to display The ComboBox control is a combination of
EJ static text or text that shouldn't be ;L;ﬂ a TextBox and a ListBox control;
edited by the user; it's often used to : ComboBox controls don't support multiple
label other controls. selections.
The Text Box control is a field that
contains a string of characters that
can be edited by the user. It can be The ListBox control contains a number of
— single-line or multiline. This is — items, and the user can select one or more
L’E] probably the most widely used Lx_! of them. Instead of placing all the items on
control of any Windows application the form you can bind it in list box it saves
and is also one of the richest the space on the form.
controls in terms of properties and
events.
% The HScrollBar and VScrollBar is used to
— The Command Button control is create scroll bars. But most of the controls
L{] present in almost every form, e.g. enabled with their own scroll bars whenever
OK and Cancel buttons. B necessary so these controls are used very

rarely.

The specialty of the Timer control is
it isn't visible at run time. Its only
purpose is to regularly raise an event
in its parent form. By writing code in
the corresponding event procedure,
you can perform a task in the
background. This is the control
having very less properties.

£3

The Picture Box control is used to
display images in any of the
following formats: BMP (bitmap),
DIB, ICO (icon), CUR (cursor), WMF
(metafile), EMF (enhanced metafile),
GIF, and JPEG. :

The DrivelListBox, DirListBox, and
FileListBox controls are often used together
to create file-oriented dialog boxes.
DriveListBox is a ComboBox-like control
filled automatically with the names of all the
drives in the system. DirListBox is a variant
of the ListBox control; it shows all the
subdirectories of a given directory.
FileListBox is another special ListBox
control; this control fills automatically with
names of the files in a specified directory.
While these three controls .offer a lot of
functionality, in a sense they have been |
superseded by the Common Dialog control,
which displays a more modern user
interface.

The Frame control is typically used
as a container for other controls. You
rarely write code that reacts to
events raised by this control.

The Data control is the key to data binding,
a Visual Basic feature that lets you connect
one or more controls on a form to fields in a
database table. The Data control works with
Jet databases even though you can also

These controls never raise any
events.

= o
x| =] use attached tables to connect to data
stored in databases stored in other formats.
But it can't work with ActiveX Data Objects
"(ADO) sources and is therefore not suitable
for exploiting the most interesting database-
oriented Visual Basic 6 features.
, The OLE control stands for Object Linking
}}}}}} The Check Box control is used when | r— and Embedding means making available
{‘5] the user has to make a yes/no, i.ii] the program which is not belonging to the
true/false selection. visual basic. Such as a Microsoft Excel
spreadsheet.
The Shape and Line controls are
used only to draw lines, rectangles,
L“] circles, and ovals on forms. They are
- -generally used for design purpose.

Actually these controls are used to make your application. But we can’t use these controls alone. We
need placeholder to put all these controls. The VB Forms works as placeholder for these controls.
You have to put the controls on the form and then write appropriate code for the same. Controls
should be arranged in elegant way on the form which gives meaning to your application. And then
you can write events for the controls.

To display the controls on the form follow the steps given below

1. Create a new project. (Refer Section 4)

2. Now you have one default Form.

Figure 1.20: Blank Form

To display the controls on the form click the mouse on the control which you want to display
on the form and then draw that control on the form. You can see the mouse pointer has been

changed to plus sign. Drag and release the mouse pointer and you will get your controls
displayed on the form. (The screen will look like Figure 1.21)

Figure 1.21: Drawing command button on the Form

Now you have command button displayed on the form. Follow the same procedure for other
controls.

Figure 1.22: Form after designing

Once you finish designing your application you must be eager to start or run your application
and want to see the result. In the following section we will discuss about how to start and stop

the application.

Running a Visual Basic Project
There are different ways to start or run the project. They are: (Figure 1.19)

a. Click on the triangle button on the standard toolbar as shown in the following Figure 1.23.
This button looks like the Play button on a VCR, CD player, or cassette tape player. Or

b. Press F5 button on the keyboard. Or
c. Select Run Menu — Start option.

This starts the application and now you can see the result. You can now interact with your
application. The program will perform events.

Figure 1.23: Start button

After running the form shown in the Figure 1.22 it will look like the form shown in the Figure 1.24.

Figure 1.24: Run Form

Stopping a Visual Basic Project
If you want to stop there are many ways to stop a Visual Basic application. T hey are

1. By using the toolbar. (Figure 1.25) Look for a button that looks like the Stop button on a
VCR, CD player, or cassette tape player. Click on this button. The project will stop and Visual
Basic will return to design mode. :

2. An alternate way to stop the project is to use the Close button found on the form. It is the little
button that looks like an “X” in the upper right corner of the form.

3. Otherwise you can have your own button written code to stop an application on your form.

When you stop any project VB returns again in the design mode.

Figure 1.25: Stop button

6. Working with Properties

Properties are characteristics or attributes of any control. All VB controls have properties. All these
properties are displayed in the property window. This window lists lots of different properties that
you can use to change how a control looks and behaves. Before writing an event procedure for the
control to respond to a user's input, you have to set certain properties for the control to determine its
appearance and how it will work with the event procedure. You can set the properties of the controls
in the properties window (i.e. design time) or at runtime.

For example, you have displayed one Label control on the form. You can change its properties like
the Appearance property; it sets whether a control should look 'Flat' or 3D.

Another property is Name. We should give a meaningful name to the control so that when we start
writing the code, we can refer to this control, and remember which it is. To change the name
property, we modify the value next to the Name box at the top of the properties list.

There are some properties that are common for all the controls

1. Name: Every control has name property. Name property is used in code to refer to the control
when you want to manipulate its properties or methods. For example, if you name a command
button cmdSave, you can write code for save. If there are multiple command buttons in the
application it will be easy for programmer to write code for the specific command button
according to its use. Otherwise you have to refer form every time.

Changing name property is not compulsory but it is a good programming practice to rename a
control by a meaningful name. It is the VB style that prefixes the name with control type.
Because of this it becomes easy to identify that control type when you write any event.

For example, you can prefix a TextBox control with the letters “txt”, command button with
“emd” as shown in the above example cmdSave. Label with “Ibl”, option button with “opt”
and so on.

2. Enabled: The enabled property of a control is a true/false property that you can set to
determine whether or not the control can receive focus or respond to user-generated events
such as the Click event. Many controls' appear "grayed" when you set their enabled property to
false. Label control never gets focus, so its enabled property has no effect on whether the user
can set focus to the Label. You can set a control's enabled property at both design time and
runtime.

- 3. Visible: This property is true by default. If you set it to false the control will not be visible to
the user when you start the application. :

4. Font: This is the prdperty that contains many properties within itself. Double-click the word
"Font" in the control's properties window; Click the ellipsis button (...) to the right of the word

- TP T N

Started with V.B.

"Font" in the properties window. You will get a Font dialog box. Where you can set all the
properties of font like size, face, style etc. The font dialog box looks like this

Left: The position of the left side of a control with respect to its container.
Top: The position of the top of a control with respect to its container. -
Height: A control's height.

Width: A control's width.

BackColor: Set the background color of the control.

ToolTipText: Except form all the controls have this property. When mouse is paused over the
control, help appears with the control it is called as tool tip text. Here you can set the name, or
purpose or any help related to that control.

Inspite of all these properties every control has some unique properties. You need to understand
these properties to understand the use of that control. Some of them are given below:

1.

2.

Text: Textbox and combo box control has text property. This property allows you to input text
at run time. This text may be string, number, special character or any other thing.

Caption: Label control has caption property. Text box do not have caption property. This is
used to display text. You can set this property design time as well as at run time.

Style: Command button, option button, list box, combo box all these controls have style
property. In case of command button it decides the appearance of the button either as standard
or graphical. If it is set to graphical you can display image on the button. In case of list and
combo box it decides the style of the list box. It is either a standard or list box or simple
combo, dropdown combo or drop down list.

6.1 Studying the Events of a Form

Forms are the container which hold all the controls of your
application. You add these to your VB application as they are
needed. Form has many properties and different events and methods.
They are discussed as follows:

Figure 1.26

The Show and Hide Methods

The Show method of a form displays that form on the screen. If the form to be shown is not already
loaded into memory, the Show method will load it before showing it. The Show method is typically
used to transfer control from one form to another.

The syntax is

formname.Show

For example, if Forml is open and want to display Form2, the code will be
Form2.Show

To suspend execution of the first form until after the second form is done with, add the keyword
constant vbModal as an argument to the Show method.

The syntax is

Form2.Show vbModal

The Hide method of a form removes the form from the screen i.e. makes it invisible, but the form
still remains in memory.

The syntax is

formname.Hide

For example,

Forml.Hide

As an alternative, you can use the keyword Me. The keyword "Me" refers to the form in which code
is currently running: Me.Hide

The Load and Unload Statements

The Load statement loads a form into memory, but does not display it. When you code the Load
statement for a form, the Form_Load event of that form will be triggered.
The syntax is

Load formname

The Unload statement removes a form from memory and from the screen. When you code the
Unload statement for a form, the Form_Unload event of that form will be triggered.

The syntax is

Unload formname

A form can unload itself, as in
Unload Me

The Unload event is also triggered when the user clicks the Windows, "close" ("X") button on the -
form.

You can also can have your own close button, place a command button named "emdClose" with the
caption "Close" on a form. In the Click event for the command button, instead of coding "End",
code: ,

Private Sub cmdExit Click()
Unload Me
End Sub

When unloaded, a form is removed from the Forms collection. It is not actually destroyed, however,
until all references to it are set to Nothing. Before this is done, it remains in the created but not
loaded state. Once all references are set to Nothing, then the form is destroyed, the Terminate event
fires, and the memory and resources the form used are released.

End statement: The End statement automatically unloads all forms in a project. Ending an
application with "End" does not give the user a second chance to keep working with the program.
- The End statement ends the program quickly.

Form_Initialize: This event will occur as soon as the form is referenced in any way. Normally, any
related objects are initialized in this event.

Form_Resize: This event resizes the form appropriately.

Form_Activate: Any code that must be run after the form has been loaded (such as a SetFocus call)
can be put into the Activate event. The form will get additional Activate events whenever it becomes
the active form in the application.

Form_GotFocus: This event will only occur if no other control on the form can get focus.
Otherwise, the specific control (the first enabled control in the TabOrder) will get the focus.

Form_Paint: This event will occur whenever the form needs to be repainted.

Form_Terminate: This event will occur when all references to the form are terminated by going out
of scope or with the Set frmXXX = Nothing syntax. To ensure you are cleaning up memory after you
unload the form, you should set the form reference to Nothing. If you don't need access to any
methods or properties, you can add this line with unload event.

6.2 Working Code for Events

Code Window

Like its name implies, this is where you type in the code that VB executes. Notice that the heading of
the window indicates with which event the code is associated. This is the window where you will
write your code. It is a word processor with full of facilities where you can write your code easily.
Instead of using notepad or any other editor to write VB code, VB provides its own code editor. This
code editor includes facilities like color coding for keywords, automatic syntax checking. It gives
auto list and auto quick info features. Auto list pop ups list of properties and methods when you type
the code and auto quick info provides the information related to syntax.

When you double click any item on the form, the form itself opens the code window, and you will
see the following window: :

You can see some lines of code appearing in the window, VB automatically'inserts that lines every
time you open the code window. Let's try to understand the code VB has inserted for you: (Refer
Figure) -

Private Sub cmdOK Click()
End sub

The words Sub and End Sub mean that this is a Procedure. Procedures are blocks of code that can be
executed by Visual Basic. The word Private defines the scope of procedures. The most important
part is cmdOK_Click (). As we have discussed name property in the above section, “cmdOK” is the
name of the button that you added to your form. The text after the _ is known as the event. Any
action you take can be an event in Visual basic. Like mouse paused over any object, click, double
click, or when the user enters some text into a textbox, when check box is selected or deselected all
of these trigger events.

In this case, the event is Click, and occurs, when ¢cmdOK, command button, is clicked. Therefore,
any code you enter into this procedure will be run when the OK button is clicked.

Now take a look at the two drop-down boxes at the top of the window:

The box on the left lists all the controls that are on your form. If you click it, you will see the names
of the three controls that you added to the Form. The screen will look like Figure.

The right hand box lists all the events that can occur for this eontrol. If you click it, you will see a
long list of possible events for the button; the one that you are currently editing is displayed in bold
(Click). If you select another item in the list, Visual Basic will automatically add a new procedure.
As you can see in the following screen there are two procedures that are cmdOK_Click and

Form_Load.

Some Common events

Events are what happen in and around your program. For example, when a user clicks a button,
many events occur: The mouse button is pressed, the command button in your program is clicked,
and then the mouse button is released. These three things correspond to the mouse down event, the
Click event, and the mouse up event. During this process, the GotFocus event for the command
button and the LostFocus event for whichever object previously held the focus also occur.

Not all controls have the same events, but some events are shared by many controls. These events
occur as a result of some specific user action, such as moving the mouse, pressing a key on the
keyboard, or clicking a text box.

1. Move: Changes an object's position in response to a code request.
2. Drag: Handles the execution of a drag-and-drop operation by the user.

3. SetFocus: Gives focus to the object specified in the method call.

® % 2w

11.
12.
13.
14.
15.
16.
17.

6.3

Using GotFocus and LostFocus: The GotFocus and LostFocus events relate to most other
events because they occur whenever a new control becomes active to receive user input. This
makes GotFocus and LostFocus useful for data validation, the process of making sure that data
is in the proper format for your program.

- Change: The user modifies text in a combo box or text box.

Click: The user clicks the primary mouse button on an object.

DbIClick: The user double-clicks the primary mouse button on an object.

DragDrop: The user drags an object to another location.

DragOver: The user drags an object over another control.

GotFocus: An object receives focus.

KeyDown: The user presses a keyboard key while an object has focus.

KeyPress: The user presses and releases a keyboard key while an object has focus.
KeyUp: The user releases a keyboard key while an object has focus.

LostFocus: An object loses focus.

MouseDown: The user presses any mouse button while the mouse pointer is over an object.
MouseMove: The user moves the mouse pointer over an object.

MouseUp: The user releases any mouse button while the mouse pointer is over an object.

Planning the Design

There are three important steps which you need to design any of your VB application that design the
interface, set the properties and write the event.

These steps are discussed in details below:

1.

First step in designing your application is to plan what the user actually wants to see on the
screen. For this pick up a pen and pencil and start designing your application on the paper.
You can directly start working in VB IDE. But paper practice is always best to get a command
on VB.

Plan what controls you require on the screen to perform your task. i.e. display text box, labels,
menu and the options in menu, command buttons, option buttons, list control etc.

Change the properties of the control. Spend more time to understand properties. Properties are
very important in designing any application in VB.

4, Next step is to arrange the controls in a proper way so that the user can easily understand the
form and then change Jabel of the controls. Give meaningful caption to the control so that
when the user reads the form he/she can easily understand the meaning and use of the control.
For example, save command button should have caption “Save” so that the user can
understand the meaning of that control.

Identify the events for the control on your screen.
Write the code, procedure or functions for the events so that the control works.

Save the project alongwith all the forms and code written over there.

® N »

Run the application.
Now its time to do something. Let us start with first application

Step 1: Start VB. As VB comes up, it automatically creates a NEW application consisting of only
one form which has no controls.

Step 2: Using the mouse, move the cursor over the toolbox and select a command button control.
Now move the cursor to the form and while pressing the left mouse button draw out a
rectangular shape with the mouse. Once the shape is drawn and the left mouse is released, a
command button appears on the form. Same way select Label control and draw on the
form, now your form should look like this:

Step 3: Change the properties of the command button. To change the properties you have
properties window open on the screen or press F4 key to open the window. And then the
property window will show the properties of the selected control.

Step 4:

Step 5:

In our case now we have selected command button, so you can see properties of the
command button, change the following properties:

. NAME: cmdShow
. CAPTION: SHOW
. Font Size: 14 Bold

Same way change the properties of the Label. Select label control and now property
window will show the properties of label. '

. NAME: IbIName
. CAPTION: keep it blank
. "Font Size: 14 Bold

Now your form should look like Figure.

To make the form alive you need to write some code or event. Coding and events will be
explained in detail in next sections. But now here we will write a simple code.
In this example, we will write code for the Click event of the command button. The click
(left mouse press and release) is the event which corresponds to pressing the button. To
open coding window, double-click on the button ‘show’. A code window will open and
here you can write your code. Type the following line of code which is shown below:

Private Sub CmdShow_Click () X
LbmName.Caption = "Hi, Have a Rocking Day!!!!"
End Sub

Step 6: Your program is now complete and ready to run. Press F5 to run the program or click on
the start button. Your application will appear as a single window in which there is a single
button /labeled ‘show’. Press the button with mouse and you will see the word ‘Hi, Have a
Rocking Day!!!!” appear on the label. Now your form should look like this.

That's it! You've just successfully done your first VB application. To return to the IDE, click on the
close button at the top right of the form.

[Apr.2013 — 4M)
[Apr.2012 - 4M]
[Oct.2011 - 4M]

[Apr.2011 - 4M]
[Oct.2010 — 4M]
[Apr.2010 — 4M]

[Apr.2013 — 8M]
[Qct.2012 — 8M]
[Apr.2012 — 8M]

[Oct.2011 — 8M]

[Oct.2010 — 8M]

PU Questions

4 Marks ,
1. Why visual basic is called as GUI Application?
2 Write short notes: GUI (Graphical User Interface).
3 Explain the structure of MDI.
4. Write short note on: Object Oriented Programming .
5 Write short note on: Even Driven Programming
6. What is Event Driven Programming Language?
1. What is Event Driven Programming in VB? Explain with example.
2. Whatis an Event? Explain various Events of a Form.
3. Discuss various Events related with Mouse and Keyboard.
4. Write a short note on:
1. Message box
ii. Keyboard events
5. Write short note:

a. Keyboard Events.
b. Even Driven Programming

(70
VISION

Chapter 2
CONSTANTS,

VARIABLES,
OPERATORS,CONTROL
STRUCTURE, LooPING
AND ARRAY

1. introduction

Designing form and displaying controls on the form and setting properties of the control is not
sufficient to create an application or software. To develop any application we need to perform some
arithmetic or logical operations, require some entity which will hold our data. To process any task
we need to execute a sequence of instructions, this can be done using some programming tools like
variables, data types, constants etc.

Like other programming language visual basic also has all these fundamental programming tools
which is called as the grammar or syntax rules of the programming language.

In this chapter we will cover some fundamental features of Visual Basic like operators, data types,
variables, constants, expressions etc. These fundamental things help us to perform some numerical
operations, assigning data and manipulating strings in program. Visual basic supports rich set of
built-in operators.

2. Data types

Visual Basic supports several data types. The default data type is variant.

The variant data type can store any type of data like numeric,
date/time or string data. The data type specifies that what kind of
data the variable will hold. The fundamental data types in Visual
Basic are variant, integer, long, single, double, string, currency, byte
and boolean. Each data type has the minimum and maximum range
of values it can hold. In addition, some types can modify to extend
their size. There are two categories of data types in VB6.0 that are
built-in types and user defined data types. Both the types are
discussed in detail in the following section.

2.1 Built in Data Types

Following table shows the list of all data types available in the
Visual Basic

Byte Store integer values
Boolean data types hold either a true or false
value. These are not stored as numeric
values and cannot be used as such. Values
are internally stored as -1 (True) and O
(False) and any non-zero value is considered
2. Boolean as true. 2 True or False
The name is given from the name Boole, a
famous mathematician.

For example: An option button property is
FALSE if it is deselected and TRUE if it is
selected.

Used to store alphanumeric values. A | 'engthof
variable length string can store approximately string

String 4 billion characters. Set of characters (fixed
3. (fixed length) can be combination of alphabets and 1 to about 65400 characters.
length) characters white spaces, special characters,

and numbers.

String For example: name and caption property of NA
any control is string.
To identify variable of type string you can put
dollar (§) sign at the end of the variable
String name. length
. For example: StrName$ 0 to 2 billion characters.
(variable) This means the variable will only hold string. +10 bytes
Strings are generally used to collect the data
from text boxes.
This data type can hold only whole or non
decimal number. Percent (%) sign is used to
make the variable compulsory to hold
4, Integer integers. 2 -32,768 to + 32,767
For example: height/width properties of any
control are of integer type.
For example: IntNumber% = 40
. : -2,147,483,468-
5. Long Store integer values. 4 +2.147 483 467
~3.402823 E+38 to
Store floating point values. For single the -1.401298 E-45 for -ve
6 Single identifier we can use is exclamation sign (!) to 4 values and from
: make it compulsory to hold single number. 1.401298 E—45 to
For example: number! = 12.43 3.402823 E38 for +ve
values. .
-1.79769313486232E+308
through-4.94065645841247
Store large floating value which exceeds the E-324 for negative values.
7. Double single data type vaiue. The identifier used 8 And from
with double is pound (#) 4.94065645841247E-324 to
1.79769313486232E+308 for
positive values.
Stores monetary values. It supports 4 digits -922,337,203,685,477.5808
8. Currency to the right of decimat point and 15 digits to 8 ‘ to
the left 922,337,203,685,477.5807
Used to store date and time values. A
9 Date variable declared as date type can store both 8 Jan 1st 100 to December
) date and time values and it can store date 31st 9999
values 01/01/0100 up to 12/31/9999
%ir:r?glt-ic) Stores any type of data and is the default | 4\ 0 to 2 billion characters
. . . L ytes
10. Visual Basic Qata type. In Visual Basic if we length
Variant declare a variable without any data type by +22 bytes
(text) default the data type is assigned as variant. NA
. Any type can be stored in a variable of type
11. | Object Object 4 NA
12. | Decimal Not fully supported by VB. 12 NA

2.2 User Defined Data Types (UDT)

The built-in data types we have examined so far have been simple. They can also be used to form
User Defined Types (UDT). In this section, we will discuss this concept in detail.

Like ‘Structure’ in C or C++ TYPE’ is used to define UDT in VB. A User-Defined Type (UDT) is a

- compound data structure that encapsulates many variables of different data types. UDTs can be

declared as Private or Public. It can only be private in form while in standard modules can be public
or private.

Now we will see how to define the type:

1.

You must first define its structure, using a Type directive in the declaration section of a
module:

Syntax
Type [private/public]Type typename
Memberl As datatypel
Member2 Ags datatypel

End Type

For example,
Private Type Item
Srno As Integer
ItemName As String
Qty As Single
Price As Currency
End type

Once you have defined a Type structure, you can create variables of that type as you would do
with any Visual Basic built-in type. This can be done with the Dim statement as in any other
variable declaration statement.

Syntax
Dim Variable name as Type Name

For example,
Dim obl As Item

You can then access its individual member of type using the dot operator.

Syntax
Variable name.Member Name

For example,

Obl.srno = 100
Obl.ItemName = “Sugar”
Obl.Qty = 4.5
Obl.Price = 40

You can also define an array of these user-defined data types.

Syntax

Dim ArrayName (size) As Type Name

For example, '

Dim Ttem Array(10) as Ttem

This User-Defined data type can be referenced in an application by using the variable name in
the procedure along with the item name.

For example, if the Caption property of a Label namely Labell is to be assigned the name of the
Item, the statement can be written as given below.

Labell.Caption = obl.IltemName

If the same is implemented as an array, then the statement becomes

Labell.Caption = obl(i).ItemName

User-defined data types can also be passed to procedures.

For example,
Sub ItemInfo (obl as Item)
Labell.Caption = obl.ItemName
Labelil.Caption = obl.Price
End Sub

You can nest UDTs. This is helpful users to create more complicated type structure.

For example,
Public Type BirthDate
MM As Integer
DD As Integer
YY As Integer
End Type
Public Type Student
DOB as Birthbhate
Name As String
Std As String
Fees As Integer
End Type '

When UDTs are nested, you use the same dot operator to access the member
(VariableMember) but with an extra level, like this:

Dim StudInfo As Student
StudInfo.DOB.DD = Q7
StudInfo.DOB.MM 09
StudInfo.DORBR.YY 1976

1]

it

UDTs can also be helpful when storing data on disk because VB's Random file type is
specifically designed to work with UDTs.

3. Variables

Variables are the words which are used to store information during program execution. A variable
has a name and a value. Variables must be declared before they are used in the program. To declare a
variable use the dim statement followed by variables name. There are some rules to define variable
name.

3.1 Rules to Define Variable

1. Variable name can be a combination of alphabets and numbers. But the name must begin with
a letter.)

2. Special characters like (@, #, $, %, &, etc) are not allowed in variable name. except
underscore ().

3. A variable name cannot exceed 255 characters. But practically it is not possible to write long
variable names. It is a good programming practice to write small and meaningful variable
name. '

For example,

Dim Name as String
Dim Rollno As Integer
Dim ProdName as String

4. Uppercase letters and lowercase letters are same for visual basic. VB does not differentiate
between uppercase and lowercase.

For example,

Dim A as Integer
Dim a as Integer

Both the variable A and a are treated same in Visual Basic.

5. Reserve words are not allowed in variable names. There are number of reserve words
(For example: Dim, If, Else, Case etc which represent commands, functions, and keywords.
These reserve words have some predefined meaning in VB. User cannot override the meaning
of these reserve words by using them in variable name.

Syntax
Dim Variable Name As Data Type
For example,

Dim x As Integer
Dim y As Double
Dim name As String

3.2 Declaring Variable

Declaring variable is optional in Visual Basic. On the basis of that VB can declare variable in two
ways i.e. implicit and explicit. But it is a good programming practice to declare variables explicitly
to avoid ambiguity.

1. Implicit declaration: In VB it is not required to declare a variable. If VB meets an undeclared
variable name it creates a new variable on the spot and uses it. The new variable’s data type is
variant, the generic data type that can accommodate all other data types. But, it is not
convenient in programming.

2. Explicit declaration: Explicit declaration means declaring variable before they are used. Dim
statement is used to declare the variable explicitly.

Syntax
Dim varname as datatype

In code window, write a statement option explicit (it is discussed in the following
section 2.3) in general declaration. After inserting this statement if you try to run program
without declaring variable it will give an error message. This avoids all the problems created
by implicit declaration. Option explicit forces the user to declare the variable explicitly.

For example,
Option explicit
Dim X as Integer

3.3 Using Option Explicit Statement

In Visual Basic explicit variable declaration is optional i.e. VB does not force variable declaration. It
may be convenient to declare variables implicitly, but it can lead to errors that may not be recognized
at run time.

For example, a variable named as “count” is used implicitly and is assigned to a value. In the next
step, this variable is incremented by 2 by the following statement.

count = cont + 2

This calculation will result in count yielding a value of 2 as cont would have been initialized to zero.
This is because the count variable has been typed as cont in the right hand side of the second
variable. But Visual Basic does not see this as a mistake and considers it to be new variable and
therefore gives a wrong result.

Let us see one more example. Suppose you are using variable X implicitly.
X = 100

Initially compiler will consider this X as an Integer variable. But later in the program if you change
the value of the X and initialized it as string variable, as shown in the following statement.

X = ”Visual Basic”

This will create an ambiguity and compiler will throw an error. Because previously it is considered
as integer variable and then if there is any change in the data type it creates problem. Therefore, to
prevent errors of this nature, we can declare a variable by adding the following statement to the
general declaration section of the Form. :

Option Explicit

This forces the user to declare all the variables. The Option Explicit statement checks in the module
for usage of any undeclared variables and reports an error to the user. The user can thus rectify the
error on seeing this error message.

The Option Explicit statement can be explicitly placed in the general declaration section of each
module using the following steps. '

1. Select Options item in the Tools menu.
2. Select the Editor tab in the Options dialog box.
3. Check Require Variable Declaration option.

4. Finally click the OK button.

Or you can write “Option Explicit” statement in the general declaration section and then start
writing code.

For example,
Option Explicit
Dim X As Integer
X =10

‘Because X is declared, this statement does not generate an error.

‘The following assignment produces a COMPILER ERROR because, ‘the variable is not declared
and Option Explicit is on.

Y = 10 ' causes ERROR

3.4 Variable Scope

Scope defines the visibility of a variable. Variables can have scope ranging from global where any
procedure in the application can access the variable to local to a single procedure. The scope of a
variable determines where you can access that variable in your code. If a variable is in scope you can
read or set its’ value. If it is out of scope you will not be able to access it.

There are three types of scope for variables in Visual Basic

1.

3.5

Global Scope: Global variables are available anywhere in
your program. Any line of code in any procedure can access
the value of the variable. But Global variables are preferred
when they are truly needed. It is not a good programming
practice to make every variable global. To create a global
variable, declare it in the declarations section of a standard
module using the Global or Public keyword.

Module Scope: Module level variables are available to any code within the module where
they are declared. Module level variables allow you to share data between procedures without
exposing that data to every procedure in the application. Therefore using module level variable
is good programming practice. To create a module level variable, declare it in the declarations
section of a module using either the Dim or Private keyword.

Local Scope: Local variables have very restricted access. They are only available to the
procedure in which they are created. They can be read or modified only in the same module.
You create local variables by declaring them with the Dim or Static keyword within the body
of a Sub, Function, or Property procedure.

Variable Duration

Duration defines the lifetime of a variable. Variables can exist for the life of an application or can be
created and destroyed in a single procedure. Variable duration, or lifetime, indicates how.long a
variable exists in the life of a program. A variable may have a duration ranging from as long as the
lifetime of an application or as short as the lifetime of a single procedure. Duration is closely related
to variable scope because the location where a variable is declared can affect both.

Normally, all variables declared at the module level have duration of the lifetime of an application,
and variables declared within a procedure only exist while the procedure is executing.

There are some exceptions to this rule

1.

Static Variables: Static variables, when declared in a procedure, keep their value even when
that procedure is over. However, because they were declared in the procedure they are not
available to other procedures and - functions. You can declare local variables
or even an entire procedure as static. Static variables retain their values between procedure
calls. A common use of static variables is as control flags, for write-once property settings, and
SO on.

aHiables, ...

You can make variable static by using keyword Static.

For example,
Static x As integer

The following code shows an event procedure for a Command Button (CmdClickMe) that
counts and displays the number of clicks made.

Private Sub CmdClickMe Click ()

Static Count As Integer

Count = Count + 1

Print Count
End Sub

The first time we click the Command Button CmdClickMe, the counter starts with its default
value of zero. Visual Basic then adds. I to it and prints the result.

2. Class Modules: Module level variables declared in class modules exist for the lifetime of the
class objects. Remember that with classes you cannot directly access code or data within the
module without first creating an instance of an object defined by the class.

3. Form Modules: Form modules, like class modules, require that an instance of the form be
created before its code and data can be used. However, VB treats form modules somewhat
differently and will automatically create an instance of a form if any property of the form is
referenced in your code. Module level variables in forms are not destroyed until the reference
to the form object is released by setting the form to nothing. Unloading a form does not clear
the value of the form's module level variables.

4. Constant

Sometimes in programs we need variables which do not change their values, this can be done by
making constant variable. Visual Basic allows you to do so. The named constant feature in Visual
Basic allows you to create value that will never change. Once a variable is made constant it means
we cannot change its value throughout the program. Constants are similar to variables, except that
you provide a value for the constant when you declare it, and its value can never change.

For example, -if you want to keep rate of interest same for the
program you can make rate of interest constant, Or the value of P1 is
always same so PI can be a constant variable.

Keyword Const is used to declare constant.

Syntax

[Public | Global | Private] Const constant name [As data typel = Value

Where,

. Global (project-level) constant can only be declared in a standard module and not in a form,
using "Public Const" or "Global Const".

] Module-level and Local-Level constants can be declared in the General Declarations Section
of either a standard or form code module using "Private Const" or only “Const” because by
default it is "Private".

. If [As Data type] is omitted then the type of the variable depends on the value.

For example,

Const pi As Double = 3.14

Public Const RATE As Single = 0.06

Private Const JDATE As Date #1/1/1980#

Const StrMSG = "Good Morning!!!" 'String data type assumed

]

Note: Tn Const declarations, string literals are delimited with double quotes ("), date literals are
delimited with pound signs (#), and numeric literals are not delimited.

The predefined constants can be used anywhere in the code in place of the actual numeric values.
This makes the code easier to read and write. For example, consider a statement that will set the
window state of a form to be maximized.

Forml.Windowstate = 2

The same task can be performed using a Visual Basic constant

Forml.WindowState = vbMaximized

5. Operators

An operator is a symbol that tells the computer to perform certain mathematical, logical and
relational operations. Operators are used in programs to manipulate data and variables. All the
operators can be classified as binary or unary operators. Binary operators are the operators which
require two operands to perform the operation and unary operators are the operators which take only
one operand to perform the operation.

For example, the positive sign and the negative sign are each unary operators. They accept only one
value when they do arithmetic operations. Generally we do not use + operator to show positive sign,
by default the number is considered as positive, if there is no any negative sign with the operand. But
to show negation we use — sign. For example, —a or -5 means negative ‘a’ or negative ‘5’. Remaining
operators work as binary operators. There are different categories of operators in Visual Basic.

5.1 Arithmetical Operators

Arithmetic operators are used to perform basic arithmetic operations like addition, multiplication,
division and exponentiation. These operators can be operated on numeric data types like integer,
double. Arithmetic operators also involve the calculation of numeric values represented by literals,
variables, other expressions, function, property calls, and constants. An arithmetic expression can be
composed of a single numerical constant or variable or combination of variable constant and operators.

Following table explains all the arithmetic operators with the sample code

Operators |
Addition Dim x As Integer

+ (Add two values in an expression 2+125 127 x=2+125
together with the + Operator)

Dim x As Integer

Subtraction
{subtract one from another with the - x =100 - 50
Operator)

) Negation aiso uses the - Operator 100-50 50 Dim x As Integer = 55
(Visual Basic), but with only one Dim y As Integer
operand, y =X
Divide

Dim y As Double
/ (Divide two numbers and return a 26/5 5.2 y=2)é/5

decimal number)

Integer Division Dim y As Integer

\ (Divide two numbers and return an 26\5 5 _
integer) y=26\5
. . N Dim y As Double
Multiply 56 30 y=45*5523
: Dim z As Double
A A
Exponent (power of) 313 27 722373
Dim x As Integer = 20
Mod . | Remainder of division 20 Mod 6 2 Dimy As Integer = 6
Dim z As Integer
z=xMody
String concatenation
& (& is not really arithmetic but is | "This is "&" "This is Print “This is” & “ “ &
considered to be in this category for | "&"Fun” Fun" “Fun”

precedence purposes.)

5.2 Relational Operators

Relational operators are used to do comparisons between two items. It compares values to one
another. Therefore relational operators are also called as comparison operators. All of the relational

operators result in a Boolean value, it is either zero or one.

The list of relational operators is as follows:

> Greater than 45>10 True
< Less than 40<18 False
>= Greater than or equal to | 200>=10 | True
<= Less than or equal to 100<=200 | True
<> Not Equal to 3<>8 True
= Equal to 5=7 False

5.3 Logical Operators

Relational operators are not sufficient to make more complicated decisions. In addition to relational
operators VB also supports logical operators like AND, OR, XOR, and NOT which are used to test
more complicated conditions and make decisions. Logical operators compare Boolean expressions
and return a Boolean result. The 4nd, Or, and Xor operators are binary because they take two
operands, while the Not operator is unary because it takes a single operand. Some of these operators

can also perform bitwise logical operations on integral values.

The Not Operator (Visual Basic) performs logical negation on a Boolean expression. It yields the
logical opposite of its operand. If the expression evaluates to True, then Not returns False; if the

expression evaluates to False, then Not returns True.

The following table shows the list of logical operators in VB

OR It results TRUE if any one expression is TRUE. Otherwise it is FALSE.
It resuits TRUE if both the expressions are true. If either of the expression is FALSE the AND
AND operation results FALSE. And if both the expressions are FALSE in that case also AND results
FALSE.
XOR Results FALSE only if one of the expression is true and the other is false.

NOT

and FALSE to TRUE.

This operator is used to negate the value of the variable. i.e. it changes the TRUE value to FALSE

5.4 Differences between the Two Concatenation
Operators

Concatenation operators join multiple strings into a single string. There are two concatenation
operators, “+” and “&”. The “+” Operator is primarily used as an arithmetic operator that adds two
numbers. However, it can also concatenate numeric operands with string operands. The + operator
has a complex set of rules that determine whether to add, concatenate, signal a compiler error, or
throw a run-time exception.

The “&” Operator is defined only for String operands, and it makes sure that both operands are
string. Regardless of the setting of Option String, the “&” operator is exclusively defined for
concatenating strings. Therefore it is recommended that to concatenate strings we should use &
operator.

For example,

Dim x As Integer
Dim y As Integer
Private Sub Commandl_Click ()
x = 100
v = 200
Print x + vy
Print x & vy
Print "Hot" + " Sour"
Print "Hot " & " Sour"
Print X & ¥y
Print x & "Number"
Print "Number" & X
'Print x + "Number" 'Conversion Error
"Print "Number" + x 'Conversion Error
End Sub

In the above example you can see the different uses of “+” and “&” operators. If “+” is used with '
both numeric operands it adds both the values. When it is used with one numeric and one string
operand then VB throws conversion error. If both the operands are string then + is overloaded by its

default meaning of addition and it performs the concatenation operation on both the strings. Whereas
“&” is used to concatenate the strings. & operators concatenate the operands inspite the fact that,
they are both strings; or either of them are string.

5.5 Precedence of the Operators

Imagine what will be the situation if we crowd all the operators together in the single expression?
For example: Ans=2+4/5-6*10/5

If there are multiple operators in a single expression you need to know the order in which Visual
Basic will evaluate them. Otherwise, you will get different results other than the expected one.

For example: ANS=6+5*38

Could be interpreted as
Ans=(6+5)*8 = 88

OR as

Ans=6+(5*8) =46

Visual Basic calculates such expressions according to the priority given to the operators that is called
operator precedence. When multiple operations occur in an expression, each operator is evaluated

and resolved according to the operator precedence. All the operators have some predefined
precedence in VB.

You can change the order of the operators by using parenthesis. In case of equal precedence,
operations are performed left to right in the order in which they appear in the expression. Indeed,
complex expressions should include parentheses to avoid any compiler misinterpretation and make
the expression easier to read. You can use one or more pairs of parentheses in an expression to
clarify the order of precedence. The parenthesis directs Visual Basic to evaluate the expression. The
inner set of parentheses is evaluated first then performs the operation in the outer parentheses, and
then it’s outer and so on.

The order of the precedence from first to last is given in the following list

Parentheses ()

Exponentiation (*).

Negation (-).

Multiplication and division (*, /).

Integer division (\).

Modulo operator (Mod).

Addition/concatenation and subtraction (+, -).

Nk w D=

8. String concatenation (&).

9. Arithmetic bit shift (<<, >>).

10. All the comparison operators (=, <>, <, <=, >, >=) have equal precedence and all have
higher precedence than the logical and bitwise operators, but lower precedence than the
arithmetic and concatenation operators.

11. Logical and bitwise negation (NOT). The logical and bitwise operators have lower precedence
than the arithmetic, concatenation, and comparison operators.

6. Expression

An expression is a combination of operands and operators that represent a value. The operands
indicate some values and operator is a symbol that indicates the action.

There are different types of expression in VB6. Like Boolean expression, logical expression, string
expression etc.

Syntax
<Variable> = <Expression>

Where,

The assignment statement causes the value of the expression on the right side of the equal sign to be
stored in the variable specified on the left side of the equal sign.

An Expression can be a constant, variable, or any valid combination of constants and/or variables.
Following example shows different forms of an expression in VB6

1. Variable> = <constant>

i.e. constant is an expression
strSub = “Visual Basic”

here “Visual Basic” is constant and strSub is a string type variable.

2. <Variable> = <Variable>

i.e. variable on the right side of equal sign is an expression
Dim nol As Integer

Dim no2 As Integer

no2 = 100

nol = no2

Here value of no2 will be assigned to nol.

3, <Variable> = <arithmetic expression>

Dim nol As Integer, no2 As Integer, no3 As Integer
nol = 100.

I

200

noz
no3 = nol + no2
nol + no2 is an arithmetic expression.

Note: You cannot specify expression on the left side of the equal to sign i.e.
<Expression> = <{expression>

is invalid

For example,

nol + no2 = no3 + no4

is invalid, because; the role of the assignment statement is to assign value to the variable specified on
the left of the equal sign therefore there can never be an expression on the left side of equal to sin.

7. Comments

Comments are the written remarks to document the program. It is the part of the program which is
not considered at the time of execution. It is not shown in the outpuf. Compiler ignores that line at
the time of execution. Thus it helps the programmer to write some tips, explanation of some
complicated logic of the code, to provide program heading, programmer details, to provide date, time
or any other details related to that code, to mark separators within the program.

An apostrophe (‘) sign is used to start the comment in VB. The sign is followed with the text
message. The comment can be inserted anywhere in the program. The comment ends with the end of
the line. Therefore it is called as single line comment. There is no any special symbol used to end the
comment.

For example,

3

'Program showing use of & and + operators.
Private Sub Commandl_ Click()

X = 100

vy = 200

Print x + vy

Print x & vy

Print "Hot" + " Sour"

Print "Hot " & " Sour"

Print x & vy

Print x & "Number"

Print "Number" & x

'"Print x + "Number" 'Conversion Error

"Print "Number" + x 'Conversion Error
End Sub
'End of the Program

8. Control Structures

In previous units we discussed fundamental concepts of Visual Basic. In Unit I we have seen that
how different tools are used to design and develop any application. In Unit II we understood the
grammar of the language i.e. how data types, variables and operators are necessary to write the
program.

Now you must be familiar with the Visual Basic Integrated Development Environment. Remember
that now you will need to write some logical expressions with the help of relational (<, >, <=, >=, I=,
==) and logical (&&, || and !) operators. Therefore it is necessary that you must have studied all
those operators thoroughly. If not go to the Unit II and read it again. Otherwise if you have
understood all those operators and tools very well then let’s get ready to write some advanced but
interesting application in the Visual Basic.

Like other programming languages Visual Basic also supports
different control structures. Control structures are used to control the
flow of program's execution. Visual Basic supports different control
structures such as decision making statement like if... Then,
if...Then ..Else, Select...Case, and Loop structures such as Do
While...Loop, While...Wend, For...Next etc. We will discuss all
these control structure in this unit.

8.1 If

Some time in the program you need to perform action on the basis of some condition. This condition
is generally a logical test. Such statements are referred as branching statement. The IF-END IF
statement is used to perform such job in visual basic.

Syntax

IF <condition> THEN
Statements
END IF

where,

. IF — THEN and END IF are the Visual Basic keywords. IF-THEN indicates the starting of the
If block and END IF shows the end of IF block. Here in VB we don’t use any brackets
therefore these statements work like brackets. -

<Condition> is either simple or compound logical test. This is written using relational or
logical operators. The result of this condition or logical expression is either TRUE or FALSE.

“Statements” is a sequence of valid VB statements.

The IF-THEN-END IF statement works as follows

The logical-expression is evaluated first. Its result is either TRUE or FALSE.
If the result is TRUE, the statements after IF-THEN statement are executed.

If the result is FALSE, there is no action. The controls are transferred to the statement
following the /F-THEN-END IF.

Example 1

Example to understand the use of IF-End If statement.

1.
2.
3.

Add a new form in your project.

Display one Command Button and Label on the form.

“Change the following properties of Labell

a. Name: IbilMessage
b. Caption: <blank>
c. Autosize: True

d. Font: Bold, 14

Change the properties of the command button
a. Caption: Click Me

b. Height: 750

c. Width: 1935

Double click on the command button. This will open the code window.

Write the following code on the Commandl_Click event

Private Sub Commandl_Click ()
Percentage = InputBox ("Enter your Percentage: ")
If Percentage >= 90 Then
lblMessage.Caption = "You can get bike from your father!!i!"
End If
End Sub

Run the Form and you will get the result as follows:

In the above exan.ple Percentage >= 90 is the logical expression or condition. If the value of the
Percentage variable is greater than or equal to 90 then only this condition will be true and then
IblMessage.Caption = "You can get bike from your father!!!" this part will get executed. Otherwise
no action will be taken and control will be shifted to the next statement after End if or if there is no
any statement after end if there is end of the program.

There are different forms of IF-THEN-END IF statement. Because in the above format if block will
be getting executed if the condition is true otherwise there is no action. This will not work in every
situation. Therefore Visual Basic provides different forms of IF-END IF statements. Like If-Then-
Else statement, If-Then-Else If and nested If statement. They are discussed in the sections that follow

8.2 Using If...Then...Else Statements

This may be the situation where you will take one action if condition is true or take other action if
the condition is false. For example, you go to E-Square Theater, you will watch movie which you
want or if movie has been changed you will go for shopping. This can be done with the help of
If...Then.. Else statement. If... Then...Else takes the following format:

Syntax
If <condition> Then

'If condition is true this part Statements will get executed
Else

'If condition is false this part Statements will get executed
End If

Where,

IF — THEN and END [F statement are the same as before.

<Condition> also same as before. It is either simple or
compound logical test. This is written using relational or
logical operators. The result of this condition or logical
expression is either TRUE or FALSE.

The new thing in this format is ELSE key word.

Here in this format you will see two parts of block of code. One is before ELSE statement and
second is after ELSE.

The IF-THEN-ELSE-END IF statement works as follows

The logical-expression is evaluated first. It results in either TRUE or FALSE
If the result is TRUE, the statements after IF-THEN statement are executed upto ELSE
statement.

If the result is FALSE, the program skips the If-Then block and executes the ELSE block i.e.
the statements after else statement.

Example 2,

Example to understand the use of If-Then-Else

1.
2.
3.

Add a new form in your project.
Display one Command Button and Label on the form.

Change the following properties of Labell
a. Name: IblMessage

b. Caption: <blank>

c. Autosize: True

Change the properties of the command button
a. Caption: Click Me

b. Height: 750

c. Width: 1935

Double click on the command button. This.will open the code window.

Write the following code on the Commandl_Click event
Private Sub Commandl_Click ()

Percentage = InputBox ("Enter your Percentage: ")
If Percentage >= 50 Then

lblMessage.Caption = "Good you are pass!!!"
Else
lblMessage.Caption = "You need to do hardwork.....You are failit!titi»

End If

End Sub

7. Run the Form and you will get the result as follows.

In the above example Percentage >= 50 is the logical expression or condition. If the value of the
Percentage variable is greater than or equal to 50 then only this condition will be true and then
1bIMessage. Caption = "Good you are pass!!!" this part will get executed. Otherwise the else part i.c.
LbiMessage.Caption = "You need to do hardwork...... ... You are faillll!” gets executed. If the
condition is false the program will not check IF block. It will directly shift to else part and after
executing else part control will hand over to the code after end if.

Example 3
1. Add a new form in your project.

2. Display two text boxes, one label and one command button on the form as you can see in the
following output form. From that output form you will get an idea how to design that form and
what properties should be set.

3. Change the following properties of Labell

a. Name: IblAnswer
b. Caption: <blank>
c. Autosize: True

d. Font Size: 14, Bold

4. Change the properties of the command button:
a. Caption: Click Me
b. Name: CmdClickMe
c. Height: as per your requirement
d. Width: as per your requirement

5. Change the properties of both text boxes:

a. Name: txtnol and txtno2
b. Font Size: 14 Bold

6. Double click on the command button. This will open the code window.
7. Write the following code on the CmdClickMe_Click event

Dim nol As Integer

Dim no2 As Integer

Dim ans As Integer

Private Sub CmdClickMe Click()
noi Va (txtnol.Text)
no2 = Va(txtno2.Text)
If nol > no2 Then

It

1

lblAnswer .Caption = "Max number is: " & nol
Else
lblAnswer .Caption = "Max number is: " & no2
End If
End Sub

% Fursd

In this example you can read values in both text boxes i.e. txtnol and txtno2. By default the value in
text boxes are text. You need to convert it into number by using VB function VAL(). This function
converts text to number. But that text should be only digits and not any character. Next if condition
checks the number, if condition is true nol is big else no2 is bigger.

You can skip the code block after If-then statement and directly write Else block. Because of this
you can directly execute the else block i.e. only the False portion of the statement, you can place
code statements after the Else statement; you aren't required to place any statements between the If
and Else statements, as shown in the following line of code:

Dim CH as Integer
If CH <= 1 then
Else
MsgBox "You are here in Else."

End If

8.3 Using Nested If Statements

You can nest if statement. i.e. if statement within another if statement. If you want to execute set of
statement depending upon the test for a- condition that depends on whether another condition is
already True, use nested If statements. You can put as many if within another if as you wish. There is
no limit on the number of if — else statement to nest. The format for a nested if statement is as

follows

If condition Then
If another condition Then
Statement
Else
Another statement
End If
End If
OR
If conditionl Then
If condition 2 Then
Statement
Else
If Condition3 then
Another statement
Else
Statements
End if
End If
End If

This nested form of if statement tests multiple conditions by placing another if statement within if
statement. The problem with such nesting is that you need to write as many end if as there are ifs in
the code. If you miss any single end if, the code will throw an error. The solution for this is instead
of writing separate if after else statement you can connect that if with else. That is called ladder if. If
you use ladder you don’t need to write end if for that Elself statement. The format for ladder is as
follows:

If conditionl Then
If condition2 Then
Statement
ElseIf Condition3 then
Another statement
ElselIf
Statements
End if
End If

Example 4

Private Sub Commandl Click ()

Percentage = InputBox{"Enter your Percentage: ")
If Percentage > 80 Then

Grade = "A"

ElseIf Percentage < 80 And Percentage > 59 Then
Grade = "B"

ElselIf Percentage < 60 And Percentage > 49 Then
Grade = "C"

ElseIf Percentage < 50 And Percentage > 39 Then
Grade = "D" '

Else
Grade = "E!

End If

lblMessage.Caption = Grade

End Sub

This is the best example which shows the use of nested if. In the above example we are calculating
Grade. There are various Grades given on the basis of percentage.

8.4

You can try this example.
Repeat the same procedure as we have done in example 2.
Here in this example you just need to change the code.

In the above example (example 2) we are checking only 2 situations i.e. true or false. But in
this example we are checking multiple situations by using multiple if statements.

Select Case

In the previous section, we have learned how to use If.. Elself control structure to control the
program flow. Now we will learn another way to control the program flow, that is, the Select Case
control structure. In some situations we need to select one option among multiple. In such situations

we can use if-else statement. But it may increase the complexity of the program and the programmer
may get confused. Because programmer needs to write many nested if statement which will be
complicated to read and modify the code. In such situation it is better to use multiway decision
making statement i.e. select — case statement. Select...case is more convenient to use than the
If.. Else...End If.

The format of the select case control structure is shown below:

Select Case expression
Case valuel
VB statementsl
Case value?2
VB Statements2
Case valueN
VB Statements

Case Else
VB Statements

End Select
Where,

. The Select Case is the VB keywords. The Expression after the select case statement is called
select condition. When the program starts executing the value of expression is compared with
the case value statement one by one. It compares with first case statements and then moves to
the next till the match is found. If the match is found the program executes the code written in
VB statement. The value of expression can be string or number. But if the expression is string
the value of case statement must be string or if it is number the value of case statements is also
number i.e. the data type of expression and case value must be same. You can write as many
case statements as you wish. Thereis no limit on the number of case statements.

. VB Statement is the valid VB statements. If any case matches with the value of select
expression, program executes VB statements of that particular Case Value.

. You can write multiple values with case. All the values should be separated with commas.
For example, Case 10,12,34,60.

J You can also give the range of values. While giving range the start and end value must be

connected wjth TO keyword. For example, case 10 To 100.

. You can also write logical expression with Case. Use IS keyword with case and then specify the
logical expression. For example, Case IS <> 100.

. The case else part is optional. If match could not be found among available case values then
case else is executed.

. Select case is easy to use for menu entries.

Examples,
1. In this example simple select case statement is used.
Private Sub Commandl_Click ()
Dim choice As String
Choice = InputBox ("Enter the choice :")
Select Case choice

Case 1

MsgBox "You select First choice."
Case 2

MsgBox "You select Second choice."”
Case 3

MsgBox "You select Third choice."

End Select
End Sub

2. If you are using string value with case and expression then the value should be enclosed
within the double quotes, as shown in the following example.

Dim grade As String
Private Sub Compute_Click()
Grade = txtgrade.Text
Select Case Grade

Case "A" :
lblResult.Caption = "Congratulations!! You have
Distinction."
Case “B"
1blResult.Caption = "Good!! You have Firs class."
Case "C"
1blResult.Caption = "Oops!!! Only Pass Class. Hard Work"
Case Else
1blResult.Caption="Very Bad!!! Fail."
End Select

End Sub

aristants, Variables,

3. Using Range of the values with case.

Dim mark As Integer
Private Sub Commandl Click ()
Mark = txtmarks.Text
Select Case mark
Case 0 To 49
1blResult.Caption
Case 50 To 59
1blResult.Caption
Case 60 To 69
1blResult.Caption
Case 70 To 84
1blResult.Caption
Case Is >= 85
1blResult.Caption = "Excellence"
Case Else
1blResult.Caption = "You have entered some wrong Value."
End Select
End Sub

"Need lot to work harder™"

"Improvel!in

"Near to Good!! Try some more."

"It's Good"

9. Looping

Sometimes in programs we need to execute some code a number of times. In such cases one option
is; write the code that many times. But is it the right solution? If you want to repeat any step 1000
times then what? VB gives solution for this. We have loop statements in VB which helps us to
execute the block of code repetitively.

Loops tells the computer when and how often to perform the set of instructions. By using loops, you
can simplify the complicated code. Loops can be used to check or process arrays, change properties
of a program's controls, and execute or skip a set of tasks until a certain condition exists or is met.
Visual basic supports different forms of loop statements.

|

While dealing with loops three things are very important:

1.

9.1

Initialization of the loop: The loop must be initialized properly. It should be done before
loop starts.

Test or condition: The condition is tested before or after the loop. If condition is at the time
of the entry of the loop such loops are called as entry controlled loop because it checks
condition at the time of the entry of the loop. Such loops are executed only if condition is true.
Otherwise they never get executed. Where as if condition is at the end of the loop such loops
are called as exit controlled loop. Because the condition is tested while exiting the loop. Such
loops are executed at least once. Because program first enters the loop and then checks the
condition. On the basis of the place of this condition there are four different forms of do loops.
They are discussed in next section.

Increment or decrement of the loop counter: If this is not set properly you may go into
infinite loop and will not be able to come out of the loop. This is done inside the loop. This is
necessary to reach upto the condition of the loop and terminate the loop.

Do loop

On the basis of the place of the condition the Do loop has several different formats, as follows:

1.

Do while condition
‘VB statements
Loop
Do
‘VB statements
Loop While condition
Do Until condition
‘VB statements
Loop

Do
‘VB statements
Loop Until condition

[]

1. Do while condition
‘VB statements
Loop

o This is the most commonly used format of do loop.
) Do, Loop and While are VB keywords.

Condition is the logical expression (Just like if statement) which is used to check the
iterations of the loop. It continues to loop as long-as the condition is true.

In this format, the condition is tested first; if condition is TRUE, then the VB statements
are executed. When it reaches to the Loop it goes back to the Do and tests condition
again. When the condition goes False it comes out of the loop. If the condition is false at
the first pass the program never enters the loop. ‘

The Do indicates the beginning of the loop where as Loop indicates the end of loop.

Examples,

1.

il

This program will not print anything because the condition is FALSE and it does not
enter in the loop.

Dim i As Integer
Private Sub Commandl Click ()

1= 20
Do While i <= 10 'Value of I is greater than 10
Print 1
i=1+1
Loop
End Sub

This program will print 1 to 10 numbers because the loop executes till the condition is -
TRUE.

Dim 1 As Integer
Private Sub Commandl_ Click ()

1 =1

Do While i <= 10
Print 1
i=1+1

Loop

End Sub

Do-

‘VB statements

Loop While condition

° Do, Loop and While are VB keywords. The Do indicates the beginning of the loop
where as Loop indicates the end of loop.

. Condition is the logical expression which is used to check the iterations of the loop. In
this case it continues to loop as long as the condition is true.

. In this format, the condition is tested at the end of the loop; therefore the program first
enters the loop and after first pass the condition is tested. If condition is TRUE, again it
goes back to Do statement and executes the code. When it reaches the Loop again it
checks the condition. The step is repeated till the condition is true. When the condition
goes False it comes out of the loop. However the condition is false still at least one pass
through the loop is carried out.

Example,

i.

This program will print 1 to 10 numbers.

Dim 1 As Integer
Private Sub Commandl_Click ()

1 =1
Do
Print 1
1 =1+ 1

Loop While i <= 10
End Sub

ii. In this code the condition is false. Still the program executes loop once. Because the
condition is tested at the end of the loop.
Dim i1 as Integer
Private Sub Commandl Click ()
i =20
Do
Print i
i=1i+1
Loop While i <= 10
End Sub

Do Until condition

‘VB statements
Loop

. Do, Loop and until are the VB keywords.

o Condition is the logical expression which is used to check the iterations of the loop.
It continues to loop as long as the condition is not true.

. In this format, the condition is tested first; if condition is FALSE, then the VB

statements are executed. When it reaches to the Loop it goes back to the Do and tests
condition again. When the condition goes frue it comes out of the loop.

. The Do indicates the beginning of the loop where as Loop indicates the end of loop.

o The Do...Until loop is basically the same as the Do...While loop, except that the
Do...Until loop runs as long as the condition is false. When the condition becomes true,
the loop terminates.

Examples,
1. Dim i As Integer
Private Sub Commandl Click ()
i=1
Do Until i > 10
' Print i
i=1+1
Loop
End Sub

ii. Dim i As Integer
Private Sub Commandl Click ()
i =100
Do Until i > 10
Print 1
i=1+1
Loop
End Sub

4. Do
‘VB statements
Loop Until condition

. Do, Loop and until are the VB keywords. The Do indicates the beginning of the loop
whereas Loop indicates the end of loop.

J Condition is the logical expression which is used to check the iterations of the loop. It
continues to loop as long as the condition is not true.
J In this format, the condition is tested at the end of the loop; therefore the program first

enters the loop and after first pass the condition is tested. If condition is no? TRUE,
again it goes back to Do statement and executes the code. When it reaches to the Loop
again it checks the condition. The step is repeated till the condition goes false. When the
condition goes true it comes out of the loop. Like Do-Loop-While this loop also
executes at least once.

Examples,

1.

Dim i As Integer

Private Sub Commandl_Click ()
1 =1

Do

Print i

i=1+1
Loop Until i > 10
End Sub

Dim i As Integer
Private Sub Commandl_ Click ()
i = 100
Do
Print i
i=1i+1
Loop Until i > 10
End Sub

Following table shows the comparison among all the 4 types of Do — Loop

Do While condition
‘VB statements
Loop

Do
‘VB statements
Loop While condition

Do Until condition
‘VB statements
Loop

Do
‘VB statements
Loop Until condition

This loop continues executing the body of the loop as

This loop continues executing the body of the loop as

long as the relational test is True. long as the relational test is False

The placement of | The placement of | The placement of | The placement of

condition is at the | condition is at the End. | condition is at the | condition is at the End.

beginning. The condition | Therefore the loop is | beginning. The condition | Therefore the loop is

is tested first. executed at least once. is tested first. executed at least once.

Do While no <20 Do Do Until no <20 Do No=no +1
No=no+1 No=no +1 No=no +1 Loop Until no <20

Loop Loop While no <20 Loop

5. Exit Do statement

Sometimes we need to exit a loop prematurely because a certain condition is satisfied. The
solution for this is Exit Do statement. Whenever your program reaches an Exit Do statement
within a loop, it will exit the current loop. The Exit Do command can be used with all types of

Do loops.

Syntax
Exit Do.

Example

This program shows the use of Exit Do command. In this program the loop should terminate if
the value of i becomes greater than or equal to 10.

Dim i As Integer
Dim j As Integer
Private Sub Commandl_Click ()

i=0
j =0
Do Until 3 > 10
Print i & " " &
i=1+73
If i >= 10 Then
Exit Do
End If
j=3 %1
Loop

End Sub

9.2 For - Next

For loop is used when the number of iterations of the loop is known. Some time it is better to use for-
next loop instead of using do-loop.

The format of for loop is bit complicated than that of DO-LOOP
statements but once you understand that there is no problem in using
for loop.

The format of the For-next loop is

withsyntax e For counter = START To END[STEP increment by]
_examples. VB Statements
. Next {Counter]

Where,

. For, to, Next, Step are VB keywords.

. The statement written in square brackets are optional.
. Counter, START, END, increment by are number variables.
. VB statement is block of code to be executed. Here you can write any valid VB statement.

. The counter is initialized by the value of START
e Theloop is executed till the Counter reaches to the value of END.

. Every time Counter is checked to see if it is greater than END; if yes, it comes out from the
loop and control passes to the statement after the Next; if not the VB statements are executed.

. At Next, by default counter is incremented by one. If you want to increase the counter by
different number you need to specify the number with STEP.

[STEP increment by] is used to increment the loop counter by the number different than the
default value i.e.1. You can specify positive as well as negative value with the STEP. If you
want to run the loop in decreasing order the value of the START should be large than END
and STEP value is negative number. If START is smaller than the END then STEP must be
positive number. This step is optional.

Examples, :

1.

This program shows use of for loop. Here the code will print sum of 1 to 10 numbers.
Dim sum As Integer
Dim no As Integer
Private Sub Commandl_ Click ()
Sum = 0
For no = 1 To 10
Sum = Sum + no
Next
Print Sum
End Sub

Program show use of for loop. Here the code will print all even numbers from 1 to 20.
Dim i As Integer
Dim j As Integer
Private Sub Commandl Click ()
For 1 = 2 To 20 Step 2

Print 1
Next
End Sub

For loop in decreasing order.

Dim i As Integer

Private Sub Commandl_Click ()
For i = 20 To 2 Step -2
Print i
Next

End Sub

Exit for Statement

Like Do Loops, you can exit from the for-loop before it terminates naturally.

Syntax

Exit For

When this statement is encountered in the code the controls are exited from current for loop. You can
write this statement anywhere within a For-Next loop.

Example,

L.

Dim i As Integer
Private Sub Commandl_Click()
For i = 2 To 200 Step 2
Print i
If 1 >= 20 Then
Exit For
End If
Next
End Sub

w P

9.3 While - Wend Loop

A While...Wend is similar to the Do While...Loop statement. It executes a block of statements while a
condition is TRUE.

The format of the While — wend is
While Condition

VB Statements
wend

Where,

. While and wend are the VB keywords.

. While indicates the beginning of the loop where as Wend is the end of the loop. Wend stands
for End of While.(W-End)

. Condition is the logical expression.
. VB Statement is block of code to execute.
) If the condition is true the VB statement is executed. If it is false the controls are shifted to the

statement after wend.

In the following example while... Wend counts from 1 to 100

Dim n as Integer

n=1

While n <=100
n=n+1

Wend

For example,

Dim i As Integer

Dim j As Integef'

Private Sub Commandl Click ()
i=0

j =20
Print "I" & » "o o ngw
Print "---------oo L :_._u
While j <= 5
Print 1 & ™ s S
i=1+3
J =3+ 1
Wend
End Sub

9.4 Nesting Control Structures

We have discussed various control structures in this unit. To make your program more easy and
flexible you can place any control structure within any other control structure as many time as you
need. This is called as nesting control structures. For example you can nest do — while loop with for
loop, or you can have if statement within select case statement. You can also nest one loop within
another loop. In case of nesting loops what happens is that the first pass of the outer loop starts the
inner loop, which executes to completion. Again the second pass of the outer loop triggers the inner
loop again. This repeats until the outer loop finishes.

Examples,
1.

This Program shows nested loops. VBNewLine is VB’s constant used to go on new line.

Option Explicit
Dim i As Integer
Dim j As Integer
Private Sub CmdStar_ Click{()
For j = 5 To 1 Step -1
For i = 1 To j
txtstar.Text = txtstar & "*"
Next 1
txtstar.Text = txtstar.Text & vbNewLine
Next j
End Sub

Program to print number from 1 to 100 using nested loops.

Option Explicit
Dim 1 As Integer
Dim j As Integer
Private Sub Cmdtable Click()
For 1 = 1 To 10
For j = 0 To 9
txttable.Text = txttable & 1 + (10 * j) & " "
Next jJ
txttable.Text = txttable.Text & vbNewlLine
Next i
End Sub

10. Array

Many times we need to process multiple items at a time.
An individual variable can hold only one item. In such cases if we
require many items we have to declare that many variables; now
imagine you have to manage with all these variables in program.
How tedious it will be! You need to remember the names of all these
variables. Such programs are not readable and not even easy to
modify. '

Therefore to overcome this problem we have arrays in VB. With arrays we can store multiple items
of same characteristics under single name. Therefore we can define array as:”An Array is a set of -
elements having same data type.”

That means all the elements in the array must have same data type. However you can have any type
of elements. In other words we can say, arrays is nothing but, set of elements of same data type
sharing single name. There is no restriction on the number of elements in the array. The size of the
array can differ. One array might have 5 elements, another might have 100 elements, and it is also
possible that an array do not have any elements at all.

An individual member of an array is called as subscript or an element. This is identified by
specifying the arrayname followed by index number in parenthesis. This index number is an integer
number which indicates the position of that element in an array. This index number determines the
dimensions of the array. Generally this index starts from 0; therefore if we consider n number of
array and if first subscript starts from 0 then the size of that array will be (n-1).

10.1 Declaring Array

Like variables, arrays are also declared before they are used. The Dim statement is used to declare
the arrays. Dim statement specifies the dimensions of the array. The format to declare the array is as
follows

Dim | Public | Private ArrayName (Size)As DataType
Where,
. Dim, Public, and Private are Visual Basic keywords that declare the array and its scope.

. If an array is Dim, the array is private to the procedure in which it is declared. If you use Dim
within a module's procedure, the array will be available to only that procedure, but if you use
Dim in the module's declarations section, the array will be available to all procedures within
the module.

. If an array is Public, the array is visible from anywhere in the program,

. Private makes the array visible only to the form or module in which it is declared.
. ArrayName is the name of the Array. Like any variable, array also has some name.
. (Size) shows the number of element that array will hold. This size is always a positive integer

number. This is also referred as index number. By default the first element of an array starts
from zero. The number that you write in the parenthesis shows the upper limit of that array.
It is the total capacity to hold the element. ’

. Data type is the type of the element in the array. All the elements are of same type. You can
have all the elements of different types, such as one element of type integer, and other of type
double and so on. Such arrays are called variant arrays. But using variant arrays is bad
programming practice.

For example, Dim Deptname (10) As String
Public Deptname (10) As String
Private Deptname (10) As String

In the above example Deptname is the name of the array. Total number of elements stored in the
array is /0. Deptname (0) will be the first element; Deptname (1) is second, and, so on. The last
element will be Deptname (9). The scope of the array will be according to the prefix written with it
i.e. Dim, Public, Private.

In VB it is not compulsory that array index should start from zero. You can specify the lower limit
along with the upper limit.

The format of that array is as follows:
. Dim City (1 to 10) as String

J Dim Books (10 to 100) as String
. Dim Price (11 to 20) as Double

You can assign the element to the array by‘specifyi.ng the array name with index number in
parenthesis. It is shown as follows: (consider the above example).

Dim Deptname (10) As String
Deptname {(0) = “Computer”

Deptname (1) = “Sales” ,
Deptname (2) = “Purchase”
Deptname (10) = *“Finance”

If the array index starts from some other value except zero.

Dim Books (10 to 100) as String

Books (10) = *Visual Basic”
Books (11) = “Java”
Books (12) = “C”

Books (100) = “C++”

I

You can use option Base statement to force the program to define the lower limit of the array. It
works like Option Explicit statement. You need to specify the value with Option Base. This
statement must appear at the form or module level. Once you declare Option Base statement it is
applied to all arrays in the current form or module.

Option Base 1

For example,

Option Base 1

Dim X (100) As Integer

This is similar to

Dim X (1 To 100) As Integer

On the basis of dimension array can be divided into 2 types that are — single dimensional and two or
- multidimensional array.

10.2 Single Dimensional Arrays

1-D array looks like a simple list. It is either in the form of row or column. While declaring this array
you need to specify only one dimension of the array. By default the array starts from the zero index
number. But in VB we have the facility to change this index and you can start indexing from 1 or
any number you wish.

For example, Dim BookName (8)

Where, BookName is the name of the array that holds the list of (7)8 book names which are called as
elements of that array. BookName (0) will be the first element of that array.

BookName (0) = “Visual Basic” .w.....First element of the array
BookName (1) = “Data Structure”Second element of the array
BookName (7) = “C programming” .. .Third element of the array

Thus instead of having (7) 8 different Varlables for 8 (7) books this is easy to share one name with
different index number.

The single dimensional arrays look like this

BookName (8)

& 1 2 7 /

Array subscripts

Figure 2.1

For example, this program shows the use of one dimensional array.
Option Explicit
Dim name(l To 5)As String
Dim 1 Ag Integer
Private Sub Commandl Click ()
For i = 1 To 5

name (i) = InputBox("Enter your name:" & i)
Print name (i)

Next

End Sub

Figure 2.2

10.3 Multidimensional Array

An array can have multiple dimensions. The array having rows and columns are called as 2-D array.
While declaring these arrays specify number of rows and columns along with array name.
First subscript indicates the number of rows and second shows number of columns. A common use
of multidimensional arrays is to represent tables of values consisting of information arranged in rows
and columns. To identify a particular table element, we must specify two indexes: The first identifies
the element's row and the second identifies the element's column.

Syntax ‘
Dim ArrayName (Rows, Cols)As DataType

> Columns

")

Figure 2.3

The following statement declares a two-dimensional array of 10 by 10:
For example, Dim StudInfo (10, 10) As String

It is also possible to define the lower limits for one or both the dimensions. An example for this is
given here.

Dim Result (100 To 200, 1 To 100)

You can have higher dimensional arrays i.e. the array having more than two dimensions. While
declaring this array you need to specify one more additional subscript along with row and column.
Because of this multidimensional array requires more space. Therefore we generally avoid use of
such arrays. If all the spaces are not utilized there is unnecessary wastage of memory space. Visual
Basic supports at least 60 array dimensions, but most people will need to use more than two or three
dimensional-arrays.

An example for three dimensional-arrays with defined lower limits is given below.

Dim Details (101 To 200, 1 To 100, 201 To 300)

For example,

Option Explicit

Dim salary (1 To 2, 1 To 2) As Integer
Dim 1 As Integer, j As Integer

Private Sub Commandl_Click()
For 1 = 1 To 2
For j = 1 To 2
Salary (i, j) = InputBox("Enter your salary:" & 1)
Print salary (i, J)
Next J
Next 1
End Sub

10.4 Dynamic Array

Sometimes we cannot predict the size of the array in advance. For this we have dynamic arrays.
Dynamic arrays are flexible and have capability of changing the size of the array at run time. The
array we discussed in the above section is fixed or static array i.e. the arrays of which size is known
to the compiler and compiler allocates memory space for that elements. But the problem with this is
if all the locations are not used there is wastage of memory space. These problems can be overcome
by using dynamic array.

'This is a static array.
Dim AuthorList (100) As String

Following are the steps to create dynamic array

1. Declare it like general array using Dim statement but do not specify the size. Keep the
parenthesis empty.
Syntax
Dim | Public | Private ArrayName () As DataType
For example,
Dim MyArray () As Integer
2. Then you create the array when you actually need it, using a ReDim statement. ReDim

statement is used to redimension the array. It can be written only in a procedure. ReDim is
executable statement. It forces the program to carry out an action at run time.

Syntax
ReDim ArrayName (UpperLimit To LowerLimit) As DataType

Example,

ReDim MyArray (10)OR
ReDim MyArray (1 to 10)

You can also have dynamic multidimensional arrays.
Dim MyArray ()As Double
ReDim MyArray (1 TO 10, 1 TO 10)

Example
'An array defined in a module
Dim Student ()As String
Sub Info ()
'Now if you need you create the array.

ReDim Student (200) As String
End Sub

By default index starts from 0 unless an Option Base 1 statement is placed at the beginning of
the module. But do not use Option Base statement here because it makes code reuse more
difficult. If you want to explicitly use a lower index different from 0, use this syntax instead.

ReDim Student (1 To 200) As String

Dynamic arrays can be resized each time with a different number of items. When you re-create
a dynamic array, its contents are reset to 0 and you lose the data it contains. If you want to
resize an array without losing its contents, use the ReDim Preserve command.

ReDim Preserve Student (200) As String

10.5 Control Array

Similar to arrays of variables; you can group a set of controls together as an array. Such a grouping
of the same types of control is called as control array. Creating control array is a flexible feature of
VB. Here same type of control means group of text boxes, labels, option buttons, and command
buttons etc. You can identify individual control in the control array by its index which is the
subscript value. Just like other array has. The index is non negative value. Control arrays can only be
one-dimensional. The size of the array extends as you add control to the array. #

Not all the properties of the control array elements are same. It may
vary i.e., some members can be visible and some not, they can be
sized differently, they can have different fonts or colors, they can
have different captions etc.

To refer to a member of a control array, the syntax is
ControlName(Index)[.Property]

For example, to refer to the caption property of the second element of an array of labels called
Labell, you would use:

Labell (1).Caption = "Visual Basic"

The benefit of using control array is under some situations they can share the common name type,
event & procedures. This reduces the overload of code and makes the program dynamic. Adding
controls with control arrays uses fewer resources than adding multiple control of same type at design
time.

We can create control array only at design time, and before creating »control array minimum one
control must be there on the form. oy

There are different methods of creating a control array:

1. You create a control and then assign a numeric, non-negative \}alﬁe to its Index. property; you
have thus created a control array with just one element. <o

For example,
. Place 2/3 text boxes on the form.

J Set Index property of all the text boxes. Like for First’"l;extbdx Index = O; for second
Index = 1 and so on. This will create control array of text box.

2. You create two controls of the same class and assign them an identical Name property. Visual
Basic shows a dialog box warning you that there's already a control with that name and asks
whether you want to create a control array. Click on the Yes button.

For example,

J Place a command button on the form. Check its Name pfoperty; It is Command].

J Now place second command button. Its Name Property is Command2. Try to change
the Name of Command2 to Command]l.

o VB will show you the dialog box asking you to create control array.

. Click on Yes Button this will create control array for these command buttons.

3. You select a control on the form, press Ctrl+C to copy it to the clipboard, and then press
Ctrl+V to paste a new instance of the control, which has the same Name property as the
original one. Visual Basic shows the warning mentioned in the previous bullet.

For example,

. Place one Command button on the form. Change its name property to CmdArray.

J Click on the command to select it.

. Put pointer on the command and press right-click and select Copy option.

* . Not on the free space of the form again press right mouse button and select Paste

button.

. Now VB will ask you to create control array. Select Yes button.
) This will create control array of command buttons with same properties of the first
command button.
To build a sample application that uses a control array, perform the following steps:
1. Start a new VB project. Place an option button on the form on right hand side and set its
properties as follows:
a. Name: optColor
b. Caption: Red
C. Font: size 14, Bold

Figure 24

2. Click the option button once to select it. Then Copy it (Press Ctrl-C, or Edit >Copy, or right-
click the mouse and choose Copy).

Figure 2.5

('lick on an open area of the form and Paste (press Ctrl-V, or Edit >Paste, or right-click the
mouse and choose Paste). The following message will appear: You already have a control
named ‘optColor'. Do you want to create a control array? Select ‘Yes'. The pasted control will
appear in the upper left-hand corer of the form. Move the pasted control toward the bottom,
next the original. By answering yes to the prompt, VB automatically sets the Index property of
the original option button to 0 and sets the Index of the pasted control to 1.

Paste two more times now VB knows that you want to create array so it will not prompt any
message this time, moving the pasted controls next to the others. Set the Captions of optColor
(1), (2), and (3) to ‘Green’, ‘Blue’, and ‘Yellow’ respectively. At this point your form should
look like this

Figure 2.6

To make alignment of the control in proper format select all the option buttons and select
Format — Align menu and select appropriate option. (To show all the option buttons in a
group you may put all of them in a frame.)

Place one label control on left hand side of the form and set the properties:

a. Name: IblColor
b. Autosize: True
c. Font: Bold, 14

Place the following code in the optColor_Click event:
Private Sub optColor Click (Index As Integer)

If optColor (Index).Index = 0 Then
lblColor.Caption = "Red"
ElseIf optColor (Index).Index
1blColor.Caption = "Green"
ElseIf optColor (Index).Index = 2 Then
lblColor.Caption = "Blue"

1 Then

]

ElseIf optColor (Index).Index = 3 Then

lblColor.Caption = "Yellow"
End If
End Sub)
8. Run the Form and click the various option buttons in any order. The run form will look like

this

Figure 2.7

11. Functions (Built in and user defined)

Functions are the block of code which perform some predefined task. In this section we will discuss
all about functions. VB supports many built-in functions as well as user defined (i.e. functions
created by user) functions. Functions save the coding efforts. A function is similar to a normal
procedure but the main purpose of the function is to accept a certain input from the user and return a
value which is passed on to the main program to finish the execution.

The general format of a function is
FunctionName (arguments)

Where,
FunctionName is some name given to the function.

(Arguments) are values that are passed on to the function.

Visual Basic Built-in Functions

Visual Basic is rich in built-in functions. They fall under various categories. These functions are
procedures that return a value. The functions fall into the following basic categories that will be
discussed in the following sections in detail

Date and Time Functions
String Functions
Numeric functions

Date and Time functions

1.

String Functions
1.

Now: The Now function returns a Date value that contains the current date and time.
Syntax

Now
For example, print now

DateDiff: The DateDiff function returns the intervals between two dates in terms of years,
months or days. The syntax for this is given below.

Syntax
DateDiff (interval, datel, date2], firstdayofweek
[, firstweekofyearl])
Date: It returns the date of the form mm/dd/yyyy for the current date. You can reset the
current date of the function.
Syntax
Date

For example, Print Date

Time: It returns the current time of the system.
Syntax

Time

For example, Print Time

Len: Returns the length of the specified string.

Syntax
Len (string)
For example, L =Len("how are you?") 'L=12

Mid$ (or Mid): Returns a substring containing a specified number of characters from a string.
Syntax

Mid$ {(strxing, start [, length])

Where,

String: Required. String expression from which characters are returned.

Start: Required; Long. Character position in string at which the part to be taken begins. If
start is greater than the number of characters in string, Mid returns a zero-length

string ("").

Length: Optional; Number of characters to return. If omitted or if there are fewer than length
characters in the text, all characters from the start position to the end of the string are
returned.

For example, Ans = Mid$("How are You?", 2, 5) 'Ans="owar"

Left$ (or Left): Returns a substring containing a specified number of characters from the
beginning (left side) of a string.

Syntax

Left$ (string, length)

Where,

String: Required. String expression from which the leftmost characters are returned.

Length: Required; Numeric expression indicating how many characters to return. If 0, a zero-
length string ("") is returned. If greater than or equal to the number of characters in
string, the entire string is returned.

For example, strSubstr = Left$("Visual Basic", 3) ' strSubstr = "Vis"

Right$ (or Right): Returns a substring containing a specified number of characters from the
end (right side) of a string.

Syntax
Right$(string, length)

Where,
String: Required. String expression from which the rightmost characters are returned.

Length: Required; Numeric expression indicating how many characters to return. If 0, a
zero-length string (") is returned. If greater than or equal to the number of
characters in string, the entire string is returned.

For example, strSubstr = Right$("Visual Basic", 3) ' strSubstr = "sic"

UCase$ (or UCase): Converts all lowercase letters in a string to uppercase. Any existing
uppercase letters and non-alpha characters remain unchanged.

Syntax
UCase$ (string)
For example, Ans=UCase$("how are you?") 'Ans = "HOW ARE YOU?"

LCase$ (or LCase): Converts all uppercase letters in a string to lowercase. Any existing
lowercase letters and non-alpha characters remain unchanged.

Syntax
LCase$ (string)
For example, ~Ans=LCase$("HOW ARE YOU?") 'Ans = "how are you?"

Instr: Returns a Long specifying the position of one string within another. The search starts
either at the first character position or at the position specified by the start argument, and
proceeds forward toward the end of the string (stopping when either string?2 is found or when
the end of the string! is reached).

Syntax

InStr ([start,] stringl, string2 [, compare])

Where,

Start: Optional. Numeric expression that sets the starting position for each search. If
omitted, search begins at the first character position. The start argument is
required if compare is specified.

stringl: Required. String expression being searched.

string2: Required. String expression sought.

Compare: Optional; numeric. A value of 0 (the default) specifies a binary (case-sensitive)
search. A value of 1 specifies a textual (case-insensitive) search.

Space$ (or Space): Returns a string containing the specified number of blank spaces.

Syntax

Space$ (number)
For examples, Ans= Space$(10) 'Ans=" "

Replace$ (or Replace): Returns a string in which a specified substring has been replaced with
another substring a specified number of times.

Syntax

Replace$ (expression, find, replacewith [,start[,count [, compare)]])
Where,

Expression: ~ Required. String expression containing substring to replace.

Find: Required. Substring being searched for.

Replacewith: Required. Replacement substring.

10.

11.

12.

Start: Optional. Position within expression where substring search is to begin. If
omitted, 1 is assumed.

A Count: Optional. Number of substring substitutions to perform. If omitted, the default

value is 4€“1, which means make all possible substitutions.

Compare: Optional. Numeric value indicating the kind of comparison to use when
evaluating substrings. (0 = case sensitive, 1 = case-insensitive)

For examples, Ans= Replace$("11/07/2009", "/", " |

'"Ans = "11-07-2009"

Trim$ (or Trim): Removes both leading and trailing blank spaces from a string.
Syntax
Trims (string)

For examples, strTest = Trim$(" How Are You? ") 'strTest = "How Are You?"

Asc: Returns an Integer representing the ASCII character code corresponding to the first letter
in a string.

Syntax
Asc{string)

For exemples, Ans= Asc("*") 'intCode =42
Ans = Asc("ABC") 'intCode = 65

Split: Returns a zero-based, one-dimensional array containing a specified number of
substrings. ‘

Syntax
Split (expression [, delimiter [, count [, compare]]])

Where,

Expression: Required. String expression containing substrings and delimiters. If
expression is a zero-length string (""), Splif returns an empty array, that is, an
array with no elements and no data.

Delimiter: Optional. String character used to identify substring limits. If omitted, the
space character (" ") is assumed to be the delimiter. If delimiter is a zero-
length string, a single-element array containing the entire expression string is
returned. '

Count: Optional. Number of substrings to be returned; 1 is default indicates that all
' substrings are returned.

Compare: Optional. Numeric value indicating the kind of comparison to use when
evaluating substrings (0 = case sensitive, 1 = case-insensitive).

13.

Join: Returns a string created by joining a number of substrings contained in an array.

Syntax
Join(list([, delimiterl)

Where,
List: Required. One-dimensional array containing substrings to be joined

Delimiter: Optional. String character used to separate the substrings in the returned string. If
omitted, the space character (" ") is used. If delimiter is a zero-length string (""), all items in
the list are concatenated with no delimiters.

Numeric Function

1.

Round: use to round off the number.

Syntax
Round (expression [, NumberOfDeceimalPlaces])

Where,

Expression: Required. It is the number which you want to round.

[, NumberOfDeceimalPlaces]: Optional. Allows to round the decimal points.

For example, Round(4.7)=35

Round (4.732,2)=4.73

ABS(): It gives the absolute value of whatever is inside the parenthesis. It removes minus sign
if it is there.

Syntax

ABS (expression)

For example, abs(1)=1

Abs(-234) =234

SQRT(): It returns the square root of the value given in the parenthesis. The number in the
parenthesis is non negative number.

Syntax

SQRT (expression)

For example, SQRT (625)=25

EXP: This function gives e (2.7182 approx) to the power x, where e is the base for natural
logarithm and x is the value in the parenthesis.

Int: It is the function that converts a number into an integer by truncating its decimal part and
the resulting integer is the largest integer that is smaller than the number.

For example, Int (3.5) = 3, Int (-5.6) = -6, Int (0.032) =0

6. Fix: Truncates the decimal part of the number and return an integer. However, when the
number is negative, it will return the smallest integer that is larger than the number.

For example, Fix (6.34)= 6 while Int(-6.34)=-7.
7. Log: is the function that returns the natural Logarithm of a number.
Logl0=2.302585

8. Rnd: It is very useful when we deal with the concept of chance and probability. The Rnd
function returns a random value between 0 and 1.

Some Special Functions

1. MsgBox (): The objective of MsgBox is to produce a p‘op-up message box and prompt the
user to click on a command button before he/she can continue. This format is as follows:

YourMsg=MsgBox (Prompt, Style Value, Title)

The first argument, prompt, is the actual message displayed in the out put message box. The
Style Value will determine what type of command buttons appear on the message box, The
- Title argument will display the title of the message box

Private Sub CmdMsg Click ()
MsgBox "This is Message Box", vbOKCancel, "Note"
End Sub

Figure 2.8

2. InputBox (): It Displays a prompt in a dialog box, waits for the user to input text or click a
button, and returns a string containing the contents of the text box.

Syntax
Variable = InputBox (prompt [, title] [, default] [, xpos]
[, ypos] [, helpfile, context])

Where,

Prompt: Required. String expression displayed as the message in the dialog box. The
maximum length of prompt is approximately 1024 characters, depending on the width of the
characters used.

Title: Optional. String expression displayed in the title bar of the dialog box. If you omit title,
the application name is placed in the title bar.

Default: Optional. String expression displayed in the text box as the default response if no
other input is provided. If you omit default, the text box is displayed empty.

xpos and ypos: Both optional. Numeric expressions that specify custom positioning of the box
on screen (by default, the box is displayed in the center of the screen, which is usually
desired).

helpfile and context: Both optional. Can be used if a help file has been set up for the
application. If either one of these arguments are used, they both must be used.

Titie Bar
Prompt

Enter Your
value here

Figure 2.9

Val(): This function converts a numeric string to a number. This function is generally used to
convert text box value to number. Because by default the text value is of type string.
Syntax

VAL (Expression)

For Example, Val (100)
X = Val (Textl.Text)

12. User Defined Functions

Like built in functions user can also define their own functions. In this section we will discuss about
user defined functions.

We can define functions as: “Functions are block of code which have some predeﬁﬁed task and they
return a value”. That means that the function itself has a type, and the function will return a value to
the calling subroutine based on the code that it contains.

Functions are similar to sub procedures. Except one difference that functions return some value.
Function keyword is used to declare function.

Syntax

Function FunctionName (arguments) As DataType

FunctionName = ...
End Function

Where,
. Function is the VB keyword.

. Arguments are the parameter you can pass to the function. Multiple parameters can be passed
using comma operators to the function. -

. DataType refers to the value returned by the function. If the value is variant then DataType
can be omitted.

. The function can be called like built in functions using function name.

o The function can be accessed using Call statement. The call statement is written as follows
Call FunctionName (arguments)

For example, In this program we are passing two numbers to the function by value. The function
compares both the numbers and print the big number. A function is declared the exact same way as a
subroutine, except using the "Function" keyword instead of "Sub". When you pass arguments to the
tunction remember that the number of parameters and its data type must be same.

This is function definition

Public Function Maxval (ByVal A As Integer, ByVal B As Integer) As Integer
Dim no As Integer
If A > B Then
MsgBox A & “is big", vbOKOnly
ElseIf B > A Then
MsgBox B & “is big", vbOKOnly
Else
MsgBox "Both are same", vbOKOnly
End If
End Function
'Calling function
Dim x As Integer, y As Integer, z As Integer

Private Sub Commandl Click ()
X = Val (Textl.Text)
y = Val (Text2.Text)
Call MaxVval (x, vy)

End Sub

Solved Programs

1. Write a VB program to find the factorial.

Solution

Private Sub Commandl Click ()
Dim n As Integer
Dim fact As Integer

fact = 1

n = Val (Textl.Text)
For 1 = 1 To n
fact = fact * i
Next

MsgBox "factorial of " & n & " is = "
End Sub

2. Write VB program to find even numbers from array.

Solution
Private Sub cmdDisplay_Click()
Dim a() As Integer

n = InputBox(”How many elements do u want to enter”)

ReDim a (n)

Print “Even Numbers are:”
For i = 0 Ton - 1

If a(i) Mod 2 = 0 Then
Print af{i)

End If

Next

End Sub

3. Write program in VB to check whether given nos. is
perfect or not by using msg box.

Solution

Private Sub cmdfind Click()

Dim n As Integer

Dim s As Integer

s =0

n = Val (Textl.Text)

For i = 1 Ton -1

If n Mod 1 = 0 Then

g =8 + 1

End If

Next

If n = s Then »
MsgBox “Perfect Number”, vbInformation, “Perfect”
Else

MsgBox “Not -Perfect Number”, vbInformation,
“Perfect”

End If

End Sub

4. Write a program to transfer the selected elements from list
1 to list 2.
Solution

Private Sub cmdMovetoRight_Click()
Dim i As Integer

If Listl.ListIndex = -1 Then Exit Sub
For i1 = Listl.ListCount - 1 To 0 Step -1
If Listl.Selected(i) = True Then

List2.AddItemListl.List (1)
Listi.Removeltem i

End If

Next i

End Sub

5. Write a VB program to accept a number from user and
calculate sum of even digits of given number.

Solution

dim input as integer

dim evenTotal

evenTotal = 0

dim digit as integer

input = Val (InputBox ("Enter an even number : "))
while input > 0

digit = input mod 10

if (digit mod 2 = 0) then
evenTotal = evenTotal + digit
endif

input = input / 10

end while
Print evenTotal

6. Write VB program to find the prime number.

Solution

Dim I, N As Integer

N = Val (InputBox("Enter a number:"))

For I =2 To N - 1

If N Mod I = 0 Then

Print "the number is not a prime number"
Exit Sub

End If

Next I

Print "the number is a prime number"

7. Write VB program to find the roots of quadratic equation.

Solution

Dim A As Integer, B As Integer, C As Integer

Dim Rootl As Single, Root2 As Single
A = Val (InputBox ("Enter a number:"))
B = Val (InputBox{("Enter a number:"))
C = Val (InputBox ("Enter a number:"))
Rootl = (B + Sgr(B "~ 2 - 4 * A * C))
Root2 = (-B - Sgr(B * 2 - 4 * A * C))
Print Rootl
Print Root2

/ (2 * A)
/ (2 * A)

8. Write a VB program to check whether a number is

positive or not.

" Solution
Dim n as integer
n = Val (InputBox ("Enter a number:"))
If n < 0 Then

MsgBox "Negative"
ElseIf n > 0 Then

‘MsgBox "Positive®

Else
MsgBox "Is is 0"
End If

0ct.2012 - 4h

Write a VB program to accept the details of doctor from
user and store the details into the database. (Don’t use

Standard Controls)

Doctor having fields Did, Dname, Address, Phoneno.

Solution

Module Modulel
Sub Main()

Dim dbfTemp As Database, recTemp As Recordset

dim dtadata As Connection

Set dtaData.Connect = "ODBC;DSN=Personnel
Database"

Set recTemp = db.OpenRecordSet ("Details")

recTemp.AddNew

Conscle.WriteLine ("Did")

recTemp.Did = Console.ReadLine

Console.WriteLine ("Dname")

recTemp.Dname = Console.ReadLine
Console.WriteLine ("Address")

recTemp.Address = Console.ReadLine
Console.WriteLine ("Phno")
recTemp.Phno = Console.ReadLine

recTemp.Update
recTemp.Close
dbfTemp.Close

End Sub
End Module

10.

Write a VB Program to concatenate two strings.

Solution

Dim strl, str2 As String

Private Sub Form_Load ()
strl=InputBox("Enter First String")
str2=InputBox("Enter Second String")
Str3=strl+str2

MsgBox ("The concatenated String is:="&str3)

End Sub
End Sub

Write a program in Visual Basic to calculate sum of digits

of a given number.

Solution

Private Sub Form_Load({()
Dim n, r, s As Integer

n = Val(InputBox ("Enter the Number"))

While n > ©

r = n Mod 10

s = 8 + 1

n =n\ 10

Wend

MsgBox ("Sum of digits of the Number is " & s)
End Sub

12. Write a VB Program to find the prime number.

Solution

Dim no as Integer, I as Integer
Dim flag as Boolean
Private sub cmoomandl_click ()
Textl.text = valueof (no)
flag = true
For I =2 to no-1
If (no mod I = 0) then
flag = false
End if
Next I
If flag = true then
Print no & “is prime no”
End if
End sub

13. Write program in VB to Print Fibonnacci Series.

Solution
Option Explicit
Dim x As Integer, y as Integer, z as Integer, I as Integer
Xx =0
y =1
Print x
Print v.)
Private Sub commandl Click ()
For 1 = 1 To 20

zZ = X +y

Print =z

X =Yy

y =z
Next i
End Sub

14. Write program in VB to find greatest number among
three numbers.

Solution

Dim nol as Integer, no2 as Integer, no3 as Integer
Private sum Commonadi Click()

Textl.text = nol

Text2. text noz

Text3.text = no3
If (nol > no2 and nol > no3) then
Print nol & “Is greatest no”
Else if (no2 > nol and no2 > no3) then
" Print no2 & “Is greatest no”
Else
Print no3 & “Is greatest no”
End if
End sub

1S. Write program in VB to check of a given number is prime
or not by using ‘msgbox’.

Solution
Dim no as Integer, I as Integer
Dim flag as Boolean
Private sub cmoomandl click()
Textl.text = valueof (no)
Flag = true
For I = 2 to no-1
If(no mod I = 0) then
Flag false

End if
Next I
If flag = true then
Print no & “is prime no”
End if
End sub

16. Write program in VB to find maximum number from an
array.

Solution
Option Explicit
Dim num(1 To 10) As Integer
Dim i As Integer, j As Integer, max As Integer
Max = 1
Private Sub cmdArray_ Click()
For i = 1 To 10

num(i) = InputBox("Enter an integer number")
If (num{(i) > Max) Then

Max = num{i)

End If
Next 1
Print “Max Number in the array is” + Max
End Sub

17. Write program in VB to check whether given no. is Armstrong or not.

Solution
Dim num as Integer, rem as Integer, sum as Integer, temp as Integer
num=InputBox (“Enter any no”)
temp=num
sum=0
While num>0
rem=num mod 10
sum=sum+ (rem*rem*rem)
num=num\10
Wend
if temp=sum then
MsgBox "Given number” & temp & “is Armstrong"

else
MsgBox "Given number:” & temp & “is not Armstrong"
end if

18. Write a VB Program to find Fibonacci Series.

10,11-4m

Solution
Option Explicit
Dim a As Integer, b As Integer, ¢ As Integer, cnt As Integer
Private Sub cmdFiboSeries_Click()
a =290
b =1
cnt = 3
Print a
Print b
Do
a =
b =
c = + Db
cnt cnt + 1
Print c¢
Loop While cnt <> 20
End Sub

e oo

19. Write a VB program to calculate x"y without using built-
in function.

Solution
Private Sub Commandi_Click ()
Dim x As Integer, y As Integer, 1 As Integer, a As Integer
X = Val (Textl.Text)
y = Val (Text2.Text)
For i = 1 To y
X = X *y
i=1+1
Next 1
Labell.Caption = x
End Sub :

20.
days.

Solution
Dim dob As Date

Dim age, y, m, d

Write a VB program to display age in year, month and

Private Sub Commandl_Click()

dob = Textl.Text
age = DateDiff ("yyyy", dob, Now()) + _
Int (Format(Now(), "mmdd") < Format(dob, "mmdd"))
y = Year (Now()) - Year (dob) '
m = Month(Now()) - Month (dob)
d = Day(Now{)) - Day (dob)
Print " Year "& Y
Print "Month :" & m
Print "Day : " & d
Print age
End Sub

PU Questions

Explain data types in VB.

[Apr.2013 - 4M]
[Apr.2013 —- 4M]
. [Apr.2013 - 4M]
[Apr.2013 — 4M]

[Apr.2013 — 4M]
[Oct.2012 — 4M]
[Oct.2012 — 4M]
[Oct.2012 — 4M]
[Oct.2012 — 4M]

Write a VB program to find the factorial.

Write VB program to find even numbers from array.

Lol

Write program in VB to check whether given nos. is perfect or
not by using msg box.

Write a program to transfer the selected elements from list 1 to list 2.
Explain constants with an example.
Explain SELECT Case in VB with example.

Write a VB program to accept a number from user and calculate
sum of even digits of given number.

© N o

Write VB program to find the prime number.

10.
11.
12.

13.

14.
15.

16.
17.
18.
19.
20.
21.
22

23.

24.
25.
26.
27.
28.
29.
30.

3L

Write VB program to find the roots of quadratic equation.
Write a VB program to check whether a number is positive or not.

Write a VB program to accept the details of doctor from user and
store the details into the database. (Don’t use Standard
Controls) Doctor having fields Did, Dname, Address, Phoneno.

Explain any two looping structures used in VB with syntax and
example.

Describe data types used in VB,

Write a program in Visual Basic to calculate sum of digits of a given
number. :

What are Control Arrays? Explain with suitable example.
Write a VB Program to display even numbers from an Array.
Write a VB Program to concatenate two strings.

Write a VB Program to find the factorial of numbers.

Write a VB Program to display age in year, month and days.
What are Arrays in Visual Basic?

Explain IF-then-else statement in Visual Basic, with syntax and
example. '

Write a program in Visual Basic to calculate sum of digits of a given
number.

Write a VB Program to find the prime number.

Write a VB Program to display odd numbers from an array.

Explain any four built-in data types in VB.

Explain DO WHILE . . . LOOP Statement in brief.

Write program in VB to Print Fibonnacci Series.

Write program in VB to find greatest number among three numbers.

Write program in VB to check of a given number is prime or not by
using ‘msgbox’.

Write program in VB to find all the even numbers from an array.

[Oct.2012 ~ 4M]
[Oct.2012 — 4M]

[Oct.2012 — 4M]
[Oct.2012 - 4M]

[Apr.2012 — 4M]
[Apr.2012 — 4M]

[Apr.2012 - 4M]
[Apr.2012 — 4M]
[Apr.2012 — 4M]
[Apr.2012 - 4M]
[Apr.2012 — 4M]
[Oct.2011 - 4M]
[Oct.2011 — 4M]

[Oct.2011 — 4M]

[Oct.2011 — 4M]
[Oct.2011 — 4M]
[Apr.2011 - 4M]
[Apr.2011 — 4M]
[Apr.2011 - 4M]
[Apr.2011 - 4M]
[Apr.2011 — 4M]

[Apr.2011 — 4M]

[Oct.2010 — 4M]
[Oct.2010 — 4M]

[Oct.2010 — 4M]

[Oct.2010 — 4M]
[Oct.2010 — 4M]
[Oct.2010 — 4M]

[Apr.2010 — 4M]
[Apr.2010 — 4M]
[Apr.2010 - 4M]
[Apr.2010 — 4M]
[Apr.2010 — 4M]
[Apr.2010 — 4]
[Apbr.2010 — 4M)
[Apr.2010 — 4M]

[Apr.2012 — 8M]

[Oct.2011 — 8M]
[Oct.2011 — 8M]

[Apr.2011 - 8M]
[Oct.2010 — 8M]

32. Describe data types in VB.

33. Explain IF-THEN-ELSE statement in VB with syntax and
example?

34. Write a program in VB to check whether given no. is perfect or not
by using 'msgbox’'.

35. Write program in VB to find maximum number from an array.
36. Write program in VB to find factorial of a given number.

37. Write program in VB to check whether given no. is Armstrong or
not.

38. What do you mean by Variable? Explain Scope of Variables.

39. Explain any two built-in string functions with Syntax and examples.
40. Write a VB Program to find Fibonacci Series.

41. Write a VB program to display even numbers from an array.

42. Write a VB program to calculate x"y without using built-in function.
43. Write a VB program to display age in year, month and days.

44. Explain different control structures used in VB with examples.

45. Write short note on Control Array.

SMarks

1. Explain any two Looping Structure used in VB with syntax and
example,

2. What are procedures and functions in Visual Basic? Explain with
syntax and example.

3. What are Control Arrays? Explain with the help of a suitable
example.

4, Explain any four string functions.

5. Explain any two looping structures in VB with syntax and

examples.
(/o
VISION

Chapter 5
WoRKING WITH

CONTROLS

1. Introduction

In the first unit we have studied some common properties for all the controls, some form events, and
methods. Now you are familiar with the visual basic environment and are able to write simple
applications. T o work with VB you must be familiar about the controls of the VB and be
comfortable in using VB controls. Therefore before moving to the advance features of VB we will
study the VB controls in this unit in detail. VB is rich in intrinsic controls. All the controls have
multiple properties and methods. Some of them are common but still there are some methods and
properties which make that control distinct from other control. This unit will guide you how to use
all the main VB controls. It is very important to understand the properties and methods of controls in
VB. It can help you to write a good program. So, it is important to give more time to play with
controls and properties. ‘ '

_— T e e @ e e —

2. Adding Controls on Form

Designing user interface is really an important skill. Adding controls on the form doesn’t mean just
crowding together some of the controls on the form and writing code for that. Your program’s user
interface must make your application easy to use. You should keep some points in mind before
starting to design user interface. Before designing user interface or forms think about the user, ask
some questions to yourself like who is going to use the application, what kind of application you are
designing. User should not get confused while using your application. There should be proper color
combination. The number of items on one form should not be more. Arrangement of the controls
must be user friendly. Keep the forms simple.

A control is an object that can be drawn on a form object to enable or enhance user interaction with
an application. Controls have properties that define their appearance and behavior, such as their
color, position, size, response to the user input etc. They can respond to events initiated by the user.

For example, you can write code for command button control's click event that would perform any
action and display a result.

In addition to properties and events, methods can also be used to manipulate controls from code.
Let us discuss these controls by means of a few simple examples in the following sections.

The controls visible on the tool bar are standard controls such as command button, label, textbox;
checkbox etc. are contained inside .EXE file which cannot be removed. Other controls are ActiveX
controls. They exist as separate files with either .VBX or OCX extension. They include specialized
controls such as; tool bar, progress bar etc.

To add any of the control on the form Jollow the steps given below:

1. Select the icon of the control on the toolbox. For example, command button, label, textbox.

2. Move the mouse to the place on the form where you want to draw the control. (This time the
cursor changes to big plus shape).

3. Click and drag the mouse to where you want to draw your control and then release the mouse
button.

4. If you double click the control icon on the toolbox the VB will draw that control automatically
on the form.

After arranging all the required controls on the form set some of the properties of that controls. It is
not mandatory but setting these properties helps you in coding and it is a good programming
practice.

Here are some important points about setting up the properties:

1. Caption: You should set the caption property of a control clearly so that a user knows what to
do with that command. For example, in the customer information form, all the command

b.uttons should have meaningful captions so that they show the purpose of that button and the
user should not have any problem in manipulating the buttons.

2. Name: A meaningful name for the ‘name property’ may be easier to write and read the event
procedure and easier to debug or modify the programs later.

3. Enabled: One more important property is whether the control is enabled or not or you are
planning to make it enable at run time.

4. Visible: You must also consider making the control visible or invisible at runtime, or when it
should become visible or invisible.

5. ToolTip Text: This property is used to set help about the control at run time.

3. Working with Properties and Methods of Each
Control

Many properties and methods are associated with each control that decide its behavior and
appearance. Properties are displayed in property window. Setting properties through property
window means design time setting and if you are changing properties through coding it is called as
run time setting. Each control is different from other controls and it has some properties which
makes it different from other controls. Likewise each control in VB can usually run many kinds of
events or procedures; these events are listed in the dropdown list in the code window that is
displayed when you double-click on an object and click on the procedures’ box. Among the events
are loading a form, clicking of a command button, pressing a key on the keyboard or dragging an
object and more. For each event, you need to write an event procedure so that it can perform an
action or a series of actions.

To start writing an event procedure, you need to double-click an object. For example, if you want to
write an event procedure when a user clicks a command button, you double-click on the command
button and an event procedure will appear as shown in Figure 3.1. It takes the following format:

Private Sub Commandl_Click
(Key in your program code here)
End Sub

Figure 3.1: Code window

You then need to type the valid VB statements in the space between Private Sub
Commandl_Click............. End Sub. Sub actually stands for sub procedure that made up a part of all
the procedures in a program. The VB statements are nothing but the number of statements that set
certain properties or trigger some actions. The syntax of Visual Basic’s program code is very simple.
It is like the simple English statements. '

The syntax to set the property of control is

Control.Property

Where, Control is the name of the control.

Property: The property name you want to use.

It is separated by a period (dot).

For example,

Form1.Show: means to show the form with the name F orml,

Labell.Visible = true: means labell is set to be visible,

Textl.text = “this is control” is to assign the text to the textbox with the name Textl,

Text2.text = 100 is to pass a value of 100 to the textbox with the name text2.

Now we will discuss all the controls in detail

1. Textbox

The textbox is the standard control used to take input from the
user as well as to display the output. It can handle only text
(string) and numeric. Numeric text in a textbox can be
converted to a numeric data by using the Val (text) function.

This is the most frequently used control in VB applications.
This control has many properties and events:

Properties

a.

Text: This property is used to enter text into the textbox. This is the most frequently
used property.

Multiline: Set the multiline property to true if you need to display text in multiple lines
in a textbox.

Scroll Bars: Scroll bars will always appear on the textbox when its multiline property is
set to true.

Alignment: If you set the multiline property to true, you can set the alignment using the
alignment property. By default alignment is left-justified.

Enabled: Tells the user whether the control is available or not.
Index: If you are using control array this property specifies the array index number.

Locked: If this control is set to true user can use it else if this control is set to false the
control cannot be used.

MaxLength: Specifies the maximum number of characters to be input. Default value is
set to 0 that means user can input any number of characters.

MousePointer: Using this we can set the shape of the mouse pointer when over a
textbox. '

PasswordChar: This is to specify symbolic character to be displayed in the textbox if
you are using the textbox for password.

ToolTiptext: This is the text shown in the small box. Used as a help text at run time
when mouse pointer will move over the textbox.

Visible: By setting this user can make the textbox control visible or invisible at runtime.

Methods

SetFocus: Transfers focus to the textbox.

it Qontrols

Event Procedures

i Change: Action happens when the textbox changes.

il Click: Action happens when the textbox is clicked.

iii. GotFocus: Action happens when the fextbox receives the active focus.

iv. LostFocus: Action happens when the textbox loses it focus.

12 KeyDown: Called when a key is pressed while the textbox has the focus.

vi. KeyUp: Called when a key is released while the textbox has the focus.

The following example illustrates a simple program that processes the input from the user.

In this program, two textboxes are displayed on form together with a few labels. The two
textboxes are used to accept inputs from the user and one of the labels will be used to display
the sum of two numbers that are entered into the two textboxes. A command button is also
there to calculate the sum of the two numbers using the plus operator. The program creates a
variable sum to accept the summation of values from textbox 1 and textbox 2.The procedure
to calculate and to display the output on the label is shown below. The output is shown in
Figure 3.2.

Private Sub Commandl Click()
'Textboxes read the values and label shows the result.
Label3.Caption = val (Textl.Text) + Val (Text2.Text)
End Sub
Private Sub Form Load ()
'Clears both the textboxes at the time o form load.
Textl.Text = nv
Text2.Text = nn
End Sub

Figure 3.2

Label

Label is one of the most frequently used controls after textbox. Mostly it is used to display
outputs. It cannot be used to read an input. This control does not have text property. Most
people use label controls to provide a descriptive caption and possibly an associated hot key
for other controls, like textbox, listbox, etc. that don't support the caption property. Usually we
do not write code for label control. This control has events supported by other controls. Label
control does not have SetFocus, GotFocus, LostFocus or any keyboard related events.

Some of the properties and events are as follows:

Properties

a.

h.

Caption: This property is used to display text and numeric data. You can change
caption property at design time through properties window or also at runtime through
code.

BorderStyle: Used if label control is to appear inside a 3D border.
Alignment: If you want to align the caption to theAright or center on the control.
WordWrap: If the caption string is long, you can set WordWrap property to true.

AutoSize: Set the AutoSize property to true and let the control automatically resize
itself to accommodate longer caption strings.

BackStyle: If this property is set to O0-Transparent. It makes the label invisible, but if
you have set Tooltip text it is displayed when mouse moves from the label.

Backcolor: Sets the background color of the label. But if you have set BackStyle
property to transparent then backcolor property is not visible.

Forecolor: Sets the color of text.

Events

I8

ii.

iii.

iv.

vi.

Click: Action happens when the label is clicked.

Change: Action happens when the label changes. If you're using a label control to
display data read from a database, you might sometimes find it useful to write code in

its change event.

DbIClick: Action happens when the label is double clicked.
MouseDown: Action happens when left mouse button is pressed.
MouseMove: Action happens when mouse is moved from the label.

MouseUp: Action happens when mouse button is released.

rking with Controls

vii. ToolTipText: provide help about the control.

Following example shows the use of label. There are 2 labels displayed on the form. And
when you click on labell the click event will be triggered and the message will be displayed
on the lebel2. '

Figure 3.3

Private Sub Labell Click()
Label2.AutoSize = True
Label2.Font.Bold = True
Label2.ForeColor = vbBlue
Label2.Caption = “You Click first Label™"

End Sub

Command Button

The command button is one of the most important controls as it is used to execute commands.
It displays an illusion that the button is pressed when the user clicks on it. The most common
event associated with the command button is the click event.

The command button control supports the usual set of keyboard and mouse events (KeyDown,
KeyPress, KeyUp, MouseDown, MouseMove, MouseUp, but not the DbIClick event) and also
the GotFocus and LostFocus events, but you'll rarely have to write code in the corresponding
event procedures. ,

Properties of a Command Button control
a. Caption: Used to display text on a command button control.

b. BackColor: To set the background color of the command button, select a color in the
BackColor property.

Je
k.

Enabled: To enable or disable the buttons set the enabled property to true or false.
If this property is false the button does not respond to any event. The button is visible
on the form but dimmed.

Visible: To make visible or invisible the buttons at run time, set the visible property to
true or false. If visible property is set to false the control remains on the form but you
can’t see it at run time,

Tooltips: This can be added to a button by setting a text to the Tooltip property of the
CommandButton.

Style: If user wants to display image or any graphics on the command button, style
property can be set to graphical. If it is standard you can display only text.

Default: You can set the default property to true if the button that receives a click when
the user presses the enter key.

Cancel: You can set the cancel i)roperty to true if you want to associate the button with
the Escape key.

MousePointer: Determines the shape of the mouse cursor when the user moves the
mouse over the command button.

Tablndex: Specifies the order of the command button in the focus order.

TabStop: Determines whether the command button can receive the focus.

Events

The Command Button control supports the usual set of keyboard and mouse events it does not
support DblClick (Double click) event.

i

ii.
iii.
iv.
V.

Vi.

vii.

Click: This is the most commonly used event of the command button. The event is
triggered when you press and release the command button through mouse

MouseDown: Action happens when left mouse button is pressed.

MouseMove: Action happens when mouse is moved from the command button.
GotFocus: Action happens when the command button receives the active focus.
LostFocus: Action happens when the command button loses it focus.

KeyDown: Called when a key is pressed while the command button has the focus.

KeyUp: Called when a key is released while the command button has the focus.

Following example shows the use of command buttons. In this example five command buttons
are displayed on the form. Each button fires click event when it is clicked, and performs
different actions. The four buttons at the bottom of the form will change the shape of the shape
control and the button at the comer of the form will end the application.

Programming in

Figure 3.4

=5

The code goes as follows:

Private Sub Commandl_ Click()
Shapel.Shape = 0
Shapel.BorderWidth

End Sub

Private Sub Command2 Click()
Shapel.Shape = 1
Shapel.Borderwidth

i
w

End Sub

Private Sub Command3_Click()
Shapel.Shape = 2
Shapel.BorderWidth

]
w

End Sub

Private Sub Command4_ Click ()
Shapel.Shape = 3
Shapel.BorderWidth

it
Ut

End Sub

Private Sub Command5_Click ()
End

End Sub

Picturebox

Picturebox is the control designed specifically to display images. Picturebox control can be
used as a container control; in addition to displaying pictures it can be used to group and
display other controls. The Picturebox is one of the controls that are used to handle graphics.
You can load a picture at design phase by clicking on the picture item in.the properties
window and select the picture from the selected folder. The image in the picturebox is not
resizable. Picturebox control is one of the most powerful and complex items in the Visual
Basic toolbox window.

Properties

Picturebox controls support all the properties related to
graphic output, including AutoRedraw, ClipControls, HasDC,
FontTransparent, CurrentX, CurrentY, and all the Drawxxxx,
Fillxxxx, and Scalexxxx properties.

Some of the properties are:

a.

Picture: Once you place a picturebox on a form, you can load an image in it. You can
load picture by setting the picture property in the properties window. You can load
images in many different graphic formats, including bitmaps (BMP), device
independent bitmaps (DIB), metafiles (WMF), enhanced metafiles (EMF), GIF and
JPEG compressed files, and icons (ICO and CUR).

You can make your application more interesting by loading picture at run time. You can
programmatically load any image in the control using the LoadPicture function

Picturel.Picture=LoadPicture ("G:\Photo\Paintings\imagel.jpg")

And you can clear the current image using either one of the following statements:
Picturel.Picture = LoadPicture("")

Or

Set Picturel.Picture = Nothing

Both are same.

VB6 picturebox control also supports icon files containing multiple icons.

Syntax

LoadPicture(filename, [size], [colordepth], [x], [yv])
Where,

Values in square brackets are optional.

If filename is an icon file, you can select a particular icon using the size or colordepth
arguments.

You can copy an image from one picturebox control to another by assigning the target
control's picture property as shown in the following code:

Picture2.Picture = Picturel.Picture

BorderStyle: You can display border to this control. Default BorderStyle is 0-None.
If necessary you can change this to another property i.e. AutoSize. Set it to True and let
the control automatically resize itself to fit the assigned image.

Autosize: Using the AutoSize value causes the control to resize to always fit the image.

farking with Controls

d. BackColor: Sets the background color of the control.

e. Align: You can set the Align property of a picturebox control to something other than
the 0-None value. By doing that, you attach the control to one of the four form borders
and have Visual Basic automatically move and resize the picturebox control when the
form is resized. picturebox controls expose a resize event, so you can trap it if you need
to move and resize its child controls too.

Methods

Picturebox controls also support all graphic methods, such as Cls, PSet, Point, Line, and Circle
and conversion methods, such as ScaleX, ScaleY, TextWidth, and TextHeight.

i. LoadPicture: You can also load the picture at runtime using the LoadPicture method.

ii. PaintPicture: Picturebox controls enable the programmer to perform a wide variety of
graphic effects, including zooming, scrolling, panning, tiling, flipping, and many fading
effects. The PaintPicture method performs a pixel-by-pixel copy from a source control
to a destination control.

Syntax

DestPictBox.PaintPicture SrcPictBox.Picture, destX, desty,

[destwidth],_[destHeight],[srcX],[srch],[srcWidth],
[sxcHeighl, [Opcodel)

Where,

The only required arguments are the source picturebox control's picture property (i.e. -
SrcPictBox.Picture), the coordinates inside the destination control where the image
must be copied.

The destX / destY arguments are expressed in the ScaleMode of the destination control;
by varying them, you can make the image appear exactly where you want.

Imagebox

The imagebox is another control that holds images and pictures. This is called as lightweight
control. Image control is much similar to picturebox control. However, there is one major
difference, the image in an imagebox is stretchable, which means it can be resized. This
feature is not available in the picturebox. Similar to the picturebox, it can also use the
LoadPicture method to load the picture. For example, the statement loads the picture
image008.jpg into the imagebox.

Imagel.Picture=LoadPicture("G:\Photo\paintings\ iamg008.jpg")

As compared to picturebox control image controls are less complicated. Image control does
not support some of the property like graphical methods, AutoRedraw, ClipControls properties
that picturebox supports. Like picture control, image control does not work like a container.
But image control is always preferable over picturebox control because they load faster and

consume less memory and system resources. Remember that image controls are windowless
objects that are actually managed by Visual Basic without creating a windows object. Image
controls can load bitmaps and JPEG and GIF images.

Properties

a. Picture: You can load a picture into an image control by using picture property.
It opens a dialogbox that lets you choose what image file to load.

b. Stretch: This is the property supported by image control which is not supported by
picture control. Stretch property determines whether the image control adjusts to fit the
picture or the picture adjusts to fit the control. It is set to False by default. When the
stretch property is false, the image control will automatically resize itself to expand or
contract to the size of the picture that is assigned to it. If stretch property is set to true,
the picture resizes to fit the control. Depending on the type of image, the image may or
may not appear distorted when stretched this is something you need to experiment with.

Method

You can also set the picture property of an image control in code by using the LoadPicture
function, which loads a picture from a file into the control at run-time. The LoadPicture
function takes a file name as an argument. Sample syntax is:

Imagel.Picture = LoadPicture("G:\photo\paintings\image008.jpg")

Using picture property is optional. As it is the default property of the image. So the following
line of code is also valid:

Imagel = LoadPicture("G:\photo\paintings\image008.jpg")

Checkbox

To perform Boolean operations checkbox control is used. It lets the user check, uncheck or
disable an option. The checkbox control is similar to the option button, except that a check
box allows you to select more than one checkbox at a time whereas you cannot make multiple
selection in option button.

Properties

a. Value: This property supports three values for the checkbox. These are unchecked (0),
checked (1), grayed (2). When the checkbox is checked, its value is set to 1; when it is
unchecked, the value is set to 0 and when it is greyed its value is set to 2.

The code used to set value property is:
Checkl.Value=1 ‘Set Checked
Check!.Value=0 ‘Set Unchecked
Checkl.Value=2 ‘Set Greyed

b. Style: Determines the look of the control. If it is set to standard (0) the control displays
the rectangular box and caption of the control. When it is selected it ticks the right mark
in that box. Whereas Graphical (1) style looks like command button; if it is selected it
looks like a pressed button and becomes white in color. The standard style of the check
box is more preferable.

c. Alignment: This property aligns the text of the control.

1-Right sets the text before the checkbox, where as the default i.e. 0-Left Justify sets the
text after checkbox which is more preferable.

d. Picture: Using this property you can apply the image on the checkbox. But to display
image the style property must be set to graphical.

Event

i. Click: This is the important event for checkbox control. It is fired when either the user
or the code changes the value of the control.

Example,

The program will change the background color of the form to red and checkbox caption to
blue when the checkbox is checked. It will change to blue and make checkbox caption to red
when the checkbox is unchecked. VbRed and vbBlue are color constants and BackColor is the
background color property of the form and caption is the caption property of the checkbox
control.

Figure 3.5

Private Sub Checkl_Click()
If Checkil.vValue = 0 Then
Form8.BackColor = vbBlue

Checkl.Caption = "Red"
Else
Form8.BackColor = vbRed
Checkl.Caption = "Blue"
. End If

End Sub

Option button: Option button controls are also known as
radio buttons because of their shape. Option button are very
much similar to checkbox control, the only difference is that
you always use Option button controls in a group of two or
more because their purpose is to offer multiple choices.
Anytime you click on a button in the group, it switches to a

selected state and all the other controls in the group become
unselected. Generally option button are grouped in a frame.
If you have multiple groups of option button on a form it is
better to put in frame to separate the group.

Properties

a.

C.

Value: This property of the option button tells whether the button was selected or not.
If the value property is set to true, the button is selected. If the value is false, the button
is not selected.

Style: Determines the look of the control. If it is set to standard (0) the control displays
the empty circle and caption of the control. When it is selected it shows filled circle.

‘The graphical (1) style looks like command button; if it is selected it looks like a

pressed button and becomes white in color. The standard style of the option button is
more preferable.

Alignment: This property aligns the text of the control.

I-Right sets the text before the checkbox, whereas the default i.e. 0-Left Justify sets the
text after checkbox which is more preferable.

Example, In the following example, the shape control is placed in the form with six
option boxes. When the user clicks on different option boxes, different shapes will
appear. The values of the shape control are 0, 1, and 2, 3 which will make it appear as a
circle, rectangle, an oval shape, and a square respectively.

Figure 3.6

Private Sub Optionl Click()
Shapel.Shape = 3
Shapel.BorderwWidth = 5

End Sub

Private Sub Option2_ Click()
Shapel.Shape = 0

Shapel.Borderwidth = 5
End Sub
Private Sub Option3 Click()
Shapellshape = 2
Shapel.Borderwidth = 5
End Sub
Private Sub Option4 Click()
Shapel.Shape = 1
Shapel.BorderwWidth = 5

End Sub

Drivelistbox, dirlistbox, and filelistbox

Three controls on the toolbox let you access the computer's file system. These are drivelistbox,
dirlistbox and filelistbox controls. These are the basic blocks for building dialogboxes that display
the host computer's file system. Using these controls, user can traverse the host computer's file
system; locate any folder or files on any hard disk, even on network drives. All these three controls
are independent of one another, and each can exist on its own, but they are generally used together.
When you select a drive in a drivelistbox, the dirlistbox control is updated to show the directory tree
on that drive. When the user selects a path in the dirlistbox control, the filelistbox control shows the
list of all the files in that directory. All these actions are interdependent.

All these controls are described as SJollows:

1. Drivelistbox: This control is a combobox-like control, when it is displayed in the form it
automatically lists all the drive's letters and volume labels available on your local disk. When
you place this control into the form and run the program, you will be able to select different
drives from your computer. The basic property of this control is the drive property, which sets
the drive to be initially selected in the control or returns the user's selection.

2. Dirlistbox: The Directory listbox is for displaying the list of directories or folders in a
selected drive. When you place this control into the form and run the program, you will be
able to select different directories from a selected drive in your computer. The basic property
of this control is the path property, which is the name of the folder whose sub folders are
displayed in the control.

3. Filelistbox: This control is a special-purpose control that displays all the files in a current
directory. Most of the properties are similar to listbox control. You can filter the files based on

their names, extensions, and attributes. As the size of the control increases VB automatically
adds scroll bars. '

The most important property of this control is the Pattern and Path property. Pattern
determines which files are displayed in the file listbox. Its default value is *.* (all files), but
you can enter whatever specification you need, and you can also enter multiple specifications
using the semicolon as a separator. The default pattern is set to *.* to display all files. You can
also set this property at run time, as in the following line of code:

Filel.Pattern = "*.txt;*.doc;*.rtf"

The path property sets the current path for the file listbox, but not for the underlying operating
system.

Though the features of the drivelistbox, dirlistbox and filelistbox controls are powerful still they
have some limitations. They are not accepted for commercial applications. These controls are not
useful when listing files on network servers and sometimes even on local disk drives, when long file
and directory names are used. To solve this problem dialogbox controls are preferred.

For example,

1.

Listbox

The function of the listbox is to present a list of items where
the user can click and select the items from the list. In order to
add items to the list, we can use the AddItem method. listbox
and combobox controls present a set of choices that.are
displayed vertically in a column. If the number of items
exceed the value that is to be displayed, scroll bars will
automatically appear on the control. These scroll bars can be
scrolled up and down or left to right through the list.

Properties

a. Addltem: This is used to add item to the list at run time. The AddItem property can be
used as follows.
Listl.AddItem “Apple”
To add items to a list at design time, click on list property in the propertybox and then
add the items. Press CTRL+ENTER after adding each item. The Addltem method is
used to add items to a list at run time. The AddItem method uses the following syntax.
Object.AddItem item, Index
The item argument is a string that represents the text to add to the list.
Index is optional. The index argument is an integer that indicates where in the list to add
the new item. If index number is not given, listbox automatically takes default index.
For example,
Listl.AddItem ”“Apple”, 0

Listl.AddItem “Banana”, 1

b. ListIndex: The items in the listbox can be identified by the ListIndex property, the
value of the ListIndex for the first item is 0, the second item has a ListIndex 1, and the
second item has a ListIndex 2 and so on.

c. Removeltem: The Removeltem method is used to remove an item from a list.

The syntax for this is given below
Object.Removeltem index

For example,

Listl.RemoveIltem Listl. ListIndex

d. Sorted: The sorted property is set to true to enable a list to appear in alphanumeric
order and false to display the list items in the order which they are added to the list.

Combobox

The function of the combobox is also to present a list of items where the user can click and
select the items from the list. However, the user needs to click on the small arrowhead on the
right of the combobox to see the items which are presented in a drop-down list. In order to add
items to the list, you can also use the Addltem method.

A combobox combines the features of a textbox and listbox. This enables the user to select
either by typing text into the combobox or by selecting an item from the list. Combobox
supports three styles that are Dropdown Combo (style 0), Simple Combo (style 1), and
Dropdown List (style 2).

The Simple combobox displays an edit area with an attached listbox which is always visible
immediately below the edit area. A simple combobox displays the contents of its list all the
time. The user can select an item from the list or type an item in the editbox portion of the
combobox. A scroll bar is displayed beside the list if there are too many items to be displayed
in the listbox area.

The Dropdown combobox first appears as only an edit area with a down arrow button at the
right. The list portion stays hidden until the user clicks the down-arrow button to drop down
the list portion. The user can either select a value from the list or type a value in the edit area.

Common list and combobox properties

a. Enabled: By setting this property to true or false user can decide whether user can
interact with this control or not.

b. Index: Specifies the control array index.

c. List: String array contains the strings displayed in the drop-down list. Starting array
index is 0.

d. ListCount: It is an integer value. Shows the total number of drop-down list items.

1

e. ListIndex: This is also an integer number which contains the index of the selected
combobox item. If an item is not selected, ListIndex is —1.

f. Locked: Boolean value. Specifies whether user can type or not in the combobox.

g. MousePointer: Integer. Specifies the shape of the mouse pointer when over the area of
the combobox.

h. Newlndex: Integer. Index of the last item added to the combobox. If the combobox
does not contain any items, NewIndex is -1

i. Sorted: Specifies whether the control’s items are sorted or not.

Style: Integer. Specifies the style of the control’s appearance
k. TabStop: Boolean. Specifies whether control receives the focus or not.
L Text: Specifies the selected item in the control’s list
m. ToolTipIndex: Specifies what text is displayed as the control’s tool tip
n. Visible: Boolean. Specifies whether control is visible or not at run time
Methods
AddItem: Add an item to the control’s list.

Clear: Removes all items from the control’s list.
Removeltem: Removes the specified item from the control.
SetFocus: Transfers focus to the control.
Event Procedures
L Change: Called when text in control is changed.
ii. DropDown: Called when the control drop-down list is displayed.
iii. GotFocus: Called when control receives the focus.

iv. LostFocus: Called when control loses it focus.
Other Controls

1. Frame Controls

Frame control is generally used to group the controls like option buttons, checkboxes etc. It is
used to separate the groups. Thus it helps to elaborate the form and your application gets the
professional touch. Controls that are contained in the frame control are said to be child
controls. To make the control a child control of the frame, first create a frame control, then by

selecting the child control's icon in the toolbox and drawing a new instance inside the frame's
border will make that control child control the frame. The benefit of grouping the control is if
you move a frame control, all the child controls go with it. If you make a container control
disabled or invisible, all its child controls also become disabled or invisible. You can exploit
these features to quickly change the state of a group of related controls.

Timer Control

This control is used if you want something to happen automatically. A timer control is
invisible at run time; its icon appears only at design time. You can trap this pulse by writing
code in the timer's timer event procedure and take advantage of it to execute a task in the
background or to monitor a user's actions. This is a very interesting control used very rarely in
the application, commonly used for updating status information on a regular basis. Using
number of timers in a single form may create confusion.

Timer event procedure should not include lot of code because this code will be executed at
every pulse and therefore can easily decrease application's performance. Do not use DoEvents
statement inside a timer event procedure because it might cause the procedure to be reentered,
especially if the interval property is set to a small value.

Properties

This is the control in VB having very few properties still very powerful

a. Name: This is the common property for all controls. Default name is Timerl, Timer2
and so on. '

b. Interval: Interval stands for the number of milliseconds between subsequent pulses,
these pulses are measured by milliseconds. When you place the timer control on a form,
default interval is 0, which means timer is disabled. The range of milliseconds you can
specify to this control is between 1 to 65535. Remember to set this property to a
suitable value in the properties window or in the F orm_Load event procedure to enable
the timer. You can set interval through property window or through coding as shown
below:

Private Sub Form Load ()
Timerl.Interval = 400
End Sub

c. Enabled: This is a Boolean property which determines the timer is activated or
deactivated.
Line Control

The line control is a decorative control whose only purpose is to let you draw one or more
straight lines.

Properties

This control has few properties:

BorderColor: Sets the color of the line.

b. BorderStyle: You can apply different styles to the line, like dotted, dashed lines, solid
etc.

¢. BorderWidth: Determines the thickness of the line. It is measured in pixel and can
range from 0 to 8192.

d. X1, X2, Y1, Y2: These points determine where the line should appear on the form.

Shape Control

The shape control is an extension of the line control. All line control, properties are supported

by shape.

A few properties of shape control are different, they are as follows:

a. Shape: This determines the type of the shape. There are six basic shapes that are
supported by shape control: rectangle (0), square (1), oval (2), circle (3), rounded
rectangle (4), and rounded square (5).

b. BackStyle: This property determines the background of the shape.

c. BorderWidth: Determines the thickness of the line. It is measured in pixel and can
range from 0 to 8192.

d. BorderStyle: You can apply different styles to the line, like dotted, dashed lines, solid.

* There are six possible border styles supported by this control.

e. FillColor, FillStyle: FillColor determines the color used to fill the shape in the manner
set by the FillStyle property.

FillStyle property supports eight possible styles i.e. no border (0), solid (1), dashed line
(2), dotted (3), dash dot (4), dash dot dot (5)
Scrolibar

The scrollbar is a commonly used control, which enables the user to select a value by
positioning it at the desired location. Visual Basic supports two scroll bars that are HScrollBar
(Horizontal Scroll Bar) and VScrollBar (Vertical Scroll Bar). The HScrollBar and the
VScrollBar controls are perfectly identical, apart from their different orientation.

Properties

Scroll bars support total 26 properties, out of which 5 are special properties:

0 with Controls

a. Value: Indicates the position of the scroll bar. It represents a set of values. The valuc
property of the scrollbar represents its current value that may be any integer between
minimum and maximum values assigned. This is an integer number.

b. Min: This is an integer number that defines the minimum value for the scroll bar.
Generally we set 0 as a min value.

Max: This is an integer number that defines the maximum value for the scroll bar.

d. SmallChange: Small change is the variation in value you get when clicking on the
scroll bar's arrows. If the user clicks the up scroll arrow, the value property of the scroll
bar increases by the amount of SmallChange until the value property reaches the value
of the max property. If the user clicks the down scroll arrow it decreases the value
property similarly. The default value for SmallChange is 1. It can be set in the range
between 1 to 32768.

e LargeChange: LargeChange is the variation you get when you click on either side of
the scroll bar indicator. The default initial value for those two properties is 1, but you'll
probably have to change LargeChange to a higher value. It too ranges between 1 to
32768.

Events
There are two key events for scrollbar controls

a. Change event: This event is triggered when you click on the scroll bar arrows or when
you drag the indicator; the scroll event fires while you drag the indicator.

b. Scroll: With this event you get continuous updates as the action is happening. This is
useful specially when you are using the long document. It updates the screen
immediately to show the result of their scrolling actions.

4. Creating MDI Applications

The Multiple Document Interface (MDI) was designed to simplify the exchange of information
among documents, all under the same roof. With the main application, you can maintain multiple
open windows, but not multiple copies of the application. Data exchange is easier when you can
view and compare many documents simultaneously.

An MDI application must have at least two forms, the parent form and one or more child forms.
Each of these forms have certain properties. There can be many child forms contained within the
parent form, but there can be only one parent form.

The parent form may not contain any controls. While the parent form is open in design mode, the
icons on the toolbox are not displayed, but you can't place any controls on the form. The parent form
can, and usually has its own menu.

To create an MDI application, follow these steps:

1. Start a new project.

2 Select Project - Add MDI form to add the parent form.
3 Set the Form's caption to MDI Window

4. Now select Project - Add form to add a SDI form.

5

Make this form as child of MDI form by setting the MDI child property of the SDI form to
true. Set the caption property to MDI child window. -

Visual Basic automatically associates this new form with the parent form. This child form can't exist
outside the parent form.

MDI forms can have their own menus and it can contain only child forms. The MDI form usually
has a menu with two commands to load a new child form and to quit the application. The child form
can have any number of commands in its menu, according to the application. When the child form is
loaded, the child form's menu replaces the original menu on the MDI form.

4.1 Working with Multiple Forms

Generally a window based application contains more than one form. In such applications these
multiple forms are related to one another in one or the other way.

For example, consider a window based Library Management System. This application has a login
form, a book information entry form, member information entry form, book issue and return form
and so on. When librarian runs this application, the first form that he sees is the login form. If login
is successful, then only librarian can access other forms in the application. Similarly, if there are
some book entries and member entries then only librarian can work with issue and return form.

We can create these multiple forms in MDI or Non-MDI applications.
Following are the steps for working with multiple forms:
Step 1: Add a New Form to the Project

By default, Visual Basic creates a startup form for us when we create a new Project. To add
a second (or additional) form to a project, all we need to do is select Project - Add Form
from the Visual Basic Menu Bar. '

- Waorking with Controls

Figure 3.7

The following screen shot will appear.

Step 2:

Y O

ﬁ& WhoFom Ipod Gidig wabBeme Digeg

=S T - S~

g fidog Splash Soesn Toof Yae Gy OO g In Opbiees Liskog

Figure 3.8

-

At this point, we just need to make sure that the New' tab is selected, and then either
double-click on 'form' or select 'form' and click on the 'open’ button. Visual Basic will then
display a new form for us in the IDE, with a caption reading 'form1'. We now have two
forms loaded into the IDE.

Design the New Form

Our project now has two forms, form! (main form) and form2 (new form). At this point,
we need to design the second form, and then we'll add code to display it from the main
form. Let's add a single label control and a command button on second form. We'll change
the name of the command button to ¢cmdOK, and change its caption Property to OK.
Finally, change the name of the Label to IblAbout.

. Step 3:

Step 4:

Figure 3.9

Write Code for the New Form

Our next step is to write some code so that when the second form is displayed, the caption
of the label control displays the information that we wish to display. We will also need to
write code that will permit the user to close the form when he or she clicks on the OK
button.

Let's start with the caption of the label. We'll place that code in the load event procedure of
the form. Here's the code.

Private Sub Form_ Load()

lblAbout.Caption = "This is demo application to work with multiple
forms.

End Sub

Finally, here's the code to close the second form, which we'll place in the Click Event
Procedure of cmdOK.

Private Sub cmdOK Click()
Unload Me

Set form2 = Nothing

End Sub

Write code to display the new form

We will display the second form‘from the main form (first form) on the click of a
command button. So, place a command button (¢cmdShow) on the main form and on the
click procedure write the following code:

Private Sub cmdShow Click()
Load form2

form2.Show

End Sub

g with-Controls

4.2 Loading, Showing and Hiding Forms

Loading and Unloading Forms

In order to load and unload the forms, load and unload statements are used. The Load statement has
the following syntax:

Load FormName

And the unload statement has the following syntax:

Unload FormName

The FormName variable is the name of the form to be loaded or unloaded. Unlike the show method
which cares of both loading and displaying the form, the load statement doesn't show the form. You
have to call the form's show method to display it on the desktop.

Showing Forms

Show method is used to show a form. If the form is loaded but invisible, the show method is used to
bring the form on top of every other window. If the form is not loaded, the show method loads it and
then displays it.

Syntax of the show method of the form
FormName . Show

Hiding Forms

The hide method is used to hide a form. The following is the syntax of the hide method.

FormName.Hide

To hide a form from within its own code, the following code can be used.

Me.Hide

You must understand that the forms that are hidden are not unloaded; they remain in the memory and
can be displayed instantly with the show method. When a form is hidden, you can still access its

properties and code. For instance, you can change the settings of its control Properties or call any
public functions in the form.

Finding out the difference between Unioad and Hide method

To know what the difference is between Unload and Hide methods we will do an example. Open a
new project and save the project. Draw two buttons on the form and name those as shown below:

ENWQQw“§ Qs

Figure 3.10

In the click event of the Hide button following code is entered.
Me.Hide

In the click event of the Unload button following code is entered.
Unload Me

Save the project and run the application. Once you click on Hide button you can note that the form is
invisible but the application is still running. But when you click on Unload button you can see that
the application is terminated.

4-3

Setting the start-up Form

A typical application has more than a single form. When an application runs the main form is loaded..
By setting the Project properties you can control which form is to be displayed in the start-up of the
application.

Follow the following steps to change startup object:

1.

voA W

| form.

Now,

Select Project -> Project Properties (In place of project in project propérties option, the name
of the current project name is displayed).

Visual Basic displays project properties dialog box.
Select General tab if it is not selected.
From Startup Object drop down, select the desired form name to make it the startup object.

Click on Ok to close properties dialog box.

if you run the project, the form that you set as a start up form will be displayed as the first

4.4 Creating Forms in Code

We can create the forms in VB dynamically as and when required. The steps are:

Step 1: Create a list of global variables for the list to follow, for example:

Option Explicit

Private allowNumericOnly As Boolean

Private frm As Form

Private 1lblDisplay As Button

Private WithEvents cmdOK As CommandButton
Private WithEvents cmdCancel As CommandButton
Private WithEvents textInput As TextBox

Step 2: Create a procedure for the form that will determine how the form appears to the user and |
what, if any text and captions will appear. Use the following example of code to set this up

for your form:

Private Sub GenerateRuntimeForm()
Dim ctrl As Control

Set frm = New Form 1

Set ¢cmdOK = Nothing

Set cmdCancel = Nothing

Set textInput Nothing

Set lblDisplay = Nothing

For Each ctrl In frm
ctrl.visible = False

Next

Step 3: Set the different commands for the buttons, using the following code as a basis for your

project:

Set cmdOK = frm.Controls.Add("VB.CommandButton", "emdOK")

Set cmdCancel = frm.Controls.Add("VB.CommandButton", "emdCancel")
Set txtInput = frm.Controls.Add("VB.TextBox", "txtInput")

Step 4: Complete the form code by adding the following display conditions and ending the

subroutine with "End Sub" as follows:
cmdOK.Visible = True
cmdCancel.Visible = True
1blDisplay.Visible = True
txtIput.vVisible = True
form.sow vbModal

End Sub

4.5 Arranging MDI Child Window -

Often, applications will have menu commands for actions such as tile, cascade, and arrange, with
regard to the open MDI child forms. You can use the LayoutMDI procedure with the MDILayout
enumeration to rearrange the child forms in an MDI parent form.

One of the four different MDILayout enumeration values can be used by the LayoutMDI
procedure. The enumeration values will display child forms as cascading, as horizontally or
vertically tiled, or as child form icons arranged along the lower portion of the MDI form.

Often, these methods are used as the event handlers called by a menu item's click event. In this way,
a menu item with the text "Cascade Windows" can have the desired effect on the MDI child
windows.

The LayoutMDI enumerations are:

Arrangelcons All MDI child icons are arranged within the client region of the MDI parent form.

Cascade All MDI child windows are cascaded within the client region of the MDI parent form.

TileHorizontal All MDI child windows are tiled horizontally within the client region of the MDI parent
form.

TileVertical All MDI child windows are tiled vertically within the client region of the MDI parent
form.

Step to Create and Implement MDI Child Form

1. Assume there is an MDI parent form having MenuStrip with option new, window and close.
In new menu, main form contains one child form having a RichTexBox.

¢ Window |

Cloxe

Figure 3.11

rking with Controje

Add one more control in main form MenuStrip as cascade Windows.

Figure 3.12

Double click on cascade windows control and write this code.
Me.LayoutMdi (MdiLayout. Cascade)

Debug the application and click on New button two times then two MDI child form with
RichTextBox will open. Now by using cascade windows control in the main menu you can
arrange all the opened MDI Child form in cascade mode.

SR

e Windows Cavsede Windows

Figure 3.13

Figure 3.14

4.6 Opening new MDI Child Window

MDI form cannot contain objects other than child forms, but MDI forms can have their own menus.
However, because most of the operations of the application have meaning only if there is at least one
child form open, there's a peculiarity about the MDI forms.

The MDI form usually has a menu with two commands to load a new child form and to quit the
application. The child form can have any number of commands in its menu, according to the
application. When the child form is loaded, the child form's menu replaces the original menu on the
MDI form

Following example illustrates the above explanation:

1. Open a new Project and name the form as Menu.frm and save the Project as Menu.vbp

2. Design a menu that has the following structure.
MDIMenu Menu caption
. MDIOpen opens a new child form
J MDIExit terminates the application

3. Then design the following menu for the child form ChildMenu Menu caption
. Child open opens a new child form
. Child Save saves the document in the active child form
. Child Close Closes the active child form

ing with Controls

4. Atdesign time double click on MD] Open and add the following code in the click event of the
open menu. ‘ .
Forml.Show

And so double click on MDI Exit and add the following code in the click event
End

Double click on Child Close and enter the following code in the click event
Unload Me

Before running the application, in the project properties set MDI form as the start-up form. Save and
run the application. F ollowing output will be displayed:

Figure 3.15

As soon as you click MDI Open you can notice that the main menu of the MDI Form is replaced
with the Menu of the Child Form.

4.7 Creating Properties in a Form

You enclose a property definition between a property statement and an End Property statement.
Within this definition you define a Get procedure, a Set procedure, or both. All the property's code
lies within these procedures.

The Get procedure retrieves the property's value, and the Set procedure stores a value. If you want
the property to have read/write access, you must define both procedures. For a read-only property,
you define only Get, and for a write-only property, you define only Set.

To create a property

I. Outside any property or procedure, use a Property Statement, followed by an End Property
statement.

2. If the property takes parameters, follow the Property keyword with the name of the procedure,
then the parameter list in parentheses.

3. Follow the parentheses with an As clause to specify the data type of the property's value. You
“must specify the data type even for a write-only property.

4. Add Get and Set procedures, as appropriate.
For example,

Dim firstName, lastName As String
Property fullName() As String
Get »
If lastName = "" Then
Return firstName
Else
Return firstName & " " & lastName
End If
End Get
Set (Byval Value As String)
Dim space As Integer = Value.IndexOf (" ")
If space < 0 Then
firstName = Value
lastName = ""
Else
firstName = Value.Substring(0, space)
lastName = Value.Substring(space + 1)
End If
End Set
End Property

4.8 Creating a Method in a form

We create methods in classes. A method created in a Class is nothing more than a Function or a Sub.
The process for creating method is similar to the process of creatmg function or sub. A method is
created using following steps:

Step 1: Create a class by clicking on Project — Add Class.

Step 2: As a method of class, add sub or function. We create a sub routine using the keyword ‘sub’
and function using the keyword ‘function’. For example, let us add a subroutine in class.
Public class Dummy
Sub foo ()
Dim strFullName As String

strFullName = "Mr. aAbaw
End Sub
End Class

Solved Programs

1. Write a program to accept details of teachers from user
and store those details into the database (Don’t use
standard control). Teachers having fields Tno, Tname,
Salary, Dateofjoining.

Solution

Private Sub cmdSave _Click ()
ADODB. AddNew
ADODB.Recordset.Fields("TNO") = txtno.Text
ADODB.Recordset.Fields("Tname") = txtname.Text

ADODB.Recordset.Fields("Salary") = txtsal.Text
ADODB.Recordset.Fields("doj") = txtdoj.Text
ADODB.Recordset.Update

End Sub

Private Sub Form Load()

Dim cnn As New ADODB. Connection
Dim rs As New ADODB.Recordset
Dim strsql As String

Set cnn = New ADODB. Connection

cnn.Open "Microsoft.Jet.OLEDB.3.Sl;Persist Security
Info=False;Data Source=C:\Documents and Settings\Administrator
\My Documents\TeacherDB. mdb"

Is.CursorType = adOpenDynamic
rs.Cursorlocation = adUseClient

rs.LockType = adLockOptimistic
Is.0Open strsql, cnn, , , adCmdText
End Sub

2. Write a program to transfer the selected elements from
the list 1 to list 2.

Solution

Private Sub cmdl Click()
List2.AddItem(Listl.List(Listl.ListIndex))
Listl.RemoveItem(Listl.ListIndex)

End Sub

Private Sub cmd2_Click()
Listl.AddItem(List2 .List(List2. ListIndex))

2. If the property takes parameters, follow the Property keyword with the name of the procedure,
then the parameter list in parentheses.

3. Follow the parentheses with an As clause to specify the data type of the property's value. You
“must specify the data type even for a write-only property.

4. Add Get and Set procedures, as appropriate.
For example,

Dim firstName, lastName As String
Property fullName() As String
Get ,
If lastName = "" Then
Return firstName
Else
Return firstName & " " & lastName
End If
End Get
Set (ByVal Value As String)
Dim space As Integer = Value.IndexOf (" ")
If space < 0 Then
firstName = Value
lastName = ""
Else
firstName = Value.Substring(0, space)
lastName = Value.Substring(space + 1)
End If
End Set
End Property

4.8 Creating a Method in a form

We create methods in classes. A method created in a Class is nothing more than a Function or a Sub.
The process for creating method is similar to the process of creatmg function or sub. A method is
created using following steps:

Step 1: Create a class by clicking on Project — Add Class.

Step 2: As a method of class, add sub or function. We create a sub routine using the keyword ‘sub’
and function using the keyword ‘function’. For example, let us add a subroutine in class.

Public class Dumnmy
Sub foo ()
Dim strFullName As String

strFullName = "Mr. Abc™
End Sub
End Class

Solved Programs

1. Write a program to accept details of teachers from user
and store those details into the database (Don’t use
standard control). Teachers having fields Tno, Tname,
Salary, Dateofjoining.

Solution

Private Sub cmdSave_Click ()
ADODRB . AddNew
ADODB.Recordset.Fields("TNo") = txtno,Text
ADODB.Recordset.Fields("Tname”) = txtname.Text

ADODB.Recordset.Fields("Salary") = txtsal.Text
ADODB.Recordset.Fields(“doj") = txtdoj.Text
ADODB.Recordset.Update

End Sub

Private Sub Form Load ()

Dim c¢cnn As New ADODB. Connection
Dim rs As New ADODE.Recordset
Dim strsgl As String

Set c¢nn = New ADODB.Connection

cnn. Open "Microsoft.Jet.OLEDB.3.51;Persist Security
Info=Fdlse;Data Source=C:\Documents and Settings\Administrator
\My Documents\TeacherDB.mdb"

rs.CursorType = adOpenDynamic
rs.CursorLocation = adUseClient

rs.LockType = adLockOptimistic
rs.Open strsgl, cnn, , -, adCmdText
End Sub

2. Write a program to transfer the selected elements from
the list 1 to list 2.

Solution
Private Sub cmdl Click()
List2.AddItem(Listl.List(Listl.ListIndex))

Listl.RemoveItem(Listl.ListIndex)
End Sub

Private Sub cmd2 Click ()
Listl.AddItem(ListZ.List(Listz.ListIndex))

List2.Removeltem(List2.ListIndex)

End Sub

Private Sub cmd3_ Click ()

Dim i1 As Integer

If Listl.ListIndex = -1 Then Exit Sub
For 1 = Listil.ListCount-1 To 0 Step -1
If Listi.Selected(i)= True Then

List2.AddItem Listl.List (1)
Listl.Removeltem i
End If

Next 1
End Sub

Private Sub cmd4_Click ()
Dim i As Integer
If List2.ListIndex=-1 Then Exit Sub

For i = List2.ListCount-1 To 0 Step
If List2.Selected(i)=True Then
Listl.AddItem List2.List (1)
List2.Removeltem i

End If

Next i

End Sub

-1

List1 Name Lst1
Multiselect Simple
List2 Name Lst2
Multiselect Simple
Command Button1 | Name Cmd1
Command Button2 | Name Cmd2
Command Button3 | Name Cmd3
Command Button4 | Name Cmd4

&§' PUQuestions

[Apr.2013 - 4M]
[Oct.2012 — 4M]
[Apr.2012 — 4M]
[Apr.2012 — 4M]
[0ct.2011 — 4M]
[Oct.2011 — 4M]

[Apr.2010 — 4M]

[Apr.2013 — 16M]

Marks

Write Short note on: Picture Box.

Write Short note on: Input Box

Write short notes: Option Button or Radio Button
Write short notes: Picture Box

State the difference between Combo Box and List box.

Write a program to transfer the selected elements from the list
1 to list 2.

Write a program to accept details of teachers from user and
store those details into the database (Don’t use standard
control). Teachers having fields Tno, Tname, Salary, Date of
joining,

_

L.

Explain the following property settings:

a. Property used to Disable Label Control.

Property to set maximum number of characters to be
input using textbox.

Property used to display a read only combo.
Property used to set Timer control.

Property used to set special Password character.
Property used to set Value of Check Boxes.

3

To resize image control.

Property used to count number of item in the listbox
control.

Property used to place a picture on a command button.

F® ™o oo

. -

J. Property to set job order for the control of the form.

Explain the following property settings: (Any Eight)

a.

b.

Property used to make the background of the label
transparent.

Property used to display information on the command
button.

Property used to display information in text box
control.

Property used to set the value of check boxes.

Property used to resize picture dynamically to fit the
dimensions of the picture box control.

Property to sort the items in a combo box.
Property used to remove items from and list box.
Property used to draw circle from the shape control.

Explain the following property settings:

e o

Property to Set Path Property of DIR List Box.
To change the title of a Form.
Property used to Set Value of Check Box.

Property used to Set Special Password Character of
Text Box.

Explain the following property settings: (Any Eight)

PR o pao op

o

Property to display picture to run time.

Property to display Value of check box.

Property to Items alphabetically in the list.

Property to display text in multiple line.

Property to add a horizontal scroll bar to a text box.
Property to set font style using common dialog box.
Property to disable textbox control.

Property to set record set in the data control.
Property to set caption of a label.

Property to hide image at run time.

Oct.2012 — 16

[Apr.2012 — 16M]

Apr.2011 164

[Apr.2011 — 16M)

[Apr.2011 - 16M]

6.

Yatking with Controls

Explain the following property settings: (Any Eight)

o
b.

P oo oo

[T

Property to place a picture on the command button.

Property to set maximum number of characters to be
input using textbox.

Property to set control items alphabetically in a combo
box',

Property used to set values of check boxes?

Property used to disable label contro]?

Property used to remove an item from a list?

Property to maximize form at run time,

Property to set font size using common dialog box?
Property to set path property of DIR List box? ,
Property to set tab order for the control on the form?

Explain the following property settings:

a.
b.

5w oo oo

k=

Property used to enable TextBox Control.

Property used to display all *.doc extension file in
Filelistbox.

Property used to resize picture to fit in the Image
Control.

Property to set tab order for the control of the form.
Property used to display a read only combo box.
Property used to set timer control.

Property used to display text on label control.

Property used to set special password character of
textbox control.

Property used to count number of item in the listbox
control.

Property used to place a picture on a command button.

(e

Chapten 4
WORKING WITH

ACTIVEX CONTROLS
AND MENUS

1. Introduction

An ActiveX is a miniature program that you can plug into your VB program to give them added
features without writing much code. ActiveX controls can help you write a program quickly and
easily. VB has many ActiveX controls available on toolbox. Inspite of that you can have tons of
ActiveX controls which you can add to your project but before that you have to add it on toolbox.

To add an ActiveX control on the project follow these steps:

1. Select project Menu — Components or Press Cirl+T. Component dialog box will appear from
where you can add different controls. (Refer Figure 4.1)

tiveX: Controls. .,

Figure 4.1: Component Dialog box

2. Check the checkbox of the control that you want to add and then click on OK button. Now you
can see the control on the toolbox. Drag the control and draw it on the form. Along with all
these control you can create your own ActiveX control in VB.

2. Creating Status Bar for your Program

Status bar is an information area generally found at the bottom of the screen. Status bars are used to
display status messages at the bottom of the form. It also contains the information about date, time,
page number, current status of application like page no, caps on/off, num on/off. It can also indicate
the progress of any running application. In case of web browser, status bars are used to indicate
progress of the loading of web pages into the browser window. There are two kinds of status bars:
simple status bars and status bars that display a panel. Simple status bars display a single message on
the status bar and a status bar with panel can display multiple messages. Upto 16 panel objects can
be contained in the collection. You can display an image and text on the panel.

You can build status bar using the status bar ActiveX control. This control has many properties that
help you build multiple panels on the status bar. You can display different information on all the
panels and control all the panels through program.

Status bar control is not default control on the tool bar. You have to add it through components

Status bar control is the part of Microsoft common controls. Follow the steps to add status bar on the
form

1. Select project Menu — Components or Press Ctrl+T. Component dialog box will appear from

where you can add different controls. (Refer Figure 4.2)

0ct2012- 4
Wiite Short 7

totus 8

Figure 4.2

Select the Microsoft Common Controls 5.0 (SP2) check box, and click on the OK button.

Figure 4.3

ActiveX Controls, ..

3. Now you can see the controls added on the toolbox. One of them is status bar control. Like
other controls you can select and display it on the form. (Refer Figure 4.4).

Figure 4.4

4. After displaying the status bar control on the form your form should look like this.
(Figure 4.5)

Figure 4.5: Form showing Status Bar Control at the bottom

®

You can add the panels by using the panels’ page. Right click on the status bar control or
select custom property from the property window. VB will open the Property page where you
can see different tabs. (Figure 4.6). You add pancls by clicking the Add button found in the
editor. While adding panels you can set the Text to be displayed for each panel, an icon,
tooltip, width for each panel you add.

ey g

Figure 4.6: Property page

To add panels to status bar in code we use the StatusBar.Panel.Add method and
StatusBar.Panels.Remove, StatusBar.Panels.RemoveAt to remove the panels. To access text in
each panel you use the text property of StatusbarPanel as: StatusBarPanels (0).Text="I am panel

b2

one .

To handle status bar panel clicks you use the PanelClick event as shown in the code below. To
work with this code, add a status bar control to the form, open its properties window, select
the Panels property and add three status bar panels. For StatusBarPanell set the text “Date:”
for StatusBarPanel2 set the text “Time”.

StatusBarl.Panels (1).Text = "Date" & Date

It

StatusBarl.Panels (2).Text "Time: " & Time

eX Controls, .

The form in design view should look like the image below:

Figure 4.7: Date and Time on status bar

3. Working with Progress Bar

A progress bar is used to inform the user about time consumed in processing. It shows the user the
status of processing, and illustrates that the application has not gone into a “not responding” state.
A large number of applications, such as setups, database-driven applications, and file transfer tools,
show progress bars at the time of processing. Progress bar gives the user some visual feedback on
what is happening during a time consuming operation. It shows color bar that grows in the control to
show how the operation is proceeding, usually 0 to 100 percent. At run time the progress bar value
property determines how much of the control has been filled. The min and max properties set the
limits of the control.

Visual Basic has the ActiveX progress bar control. It can be included
on forms through the Microsoft Windows Common Controls
component,

It has various properties and methods, but the most commonly used
properties are Min, Max and Value.

Min is used to denote the lowest value a progress bar can take. This
is the initial starting position of the progress bar.

Max is used to depict the maximum value that can be assigned to the progress bar. A progress bar
can’t take a value greater than the one specified in the Max property. '

Value property can be used to retrieve a value which is in between min and max value to the
progress bar, so that the bar in the progress bar can increase appropriately.

For example, this example explains the use of progress bar. In this example the form’s background
color changes as the progress bar value increases. The value of progress bar starts with 0 and end
with 100. It starts processing on the timer. The value increases by 5 after 1000 milliseconds. Once
the value of progress bar reaches to 100 the timer stops.

Follow the steps given below:

Step 1: Now you have the progress bar control on your tool box. In the previous section we have
added Microsoft Common controls for Status bar control. Progress Bar is also one of the
components of Microsoft Common controls. (Refer Figure 4.8).

Figure 4.8: Progress bar control enclircled

Step 2: Select the control shown and draw on the form. As shown in the Figure 4.9. Along with
progress bar draw timer and one label. Set the following properties of all the controls as
follows:

Timer1: Interval = 1000
Labell: Font: 14 Bold
ProgressBarl: Min = 0, Max = 100

Figure 4.9: Form with Progress Bar

Step 3: Write the following code on the Timerl_Timer event.

Private Sub Timerl_Timer ()
ProgressBarl.vValue = ProgressBaril.Value + §
Formé .RackColor =

RGB (Rnd * ProgressBarl.Value, Rnd *
ProgressBaril.vValue, Rnd * ProgressBarl.value)

Labell.Caption = ProgressBarl.vValue & "g"
If ProgressBarl.value = 100 Then
Timerl.Enabled = False
End If
End Ssub

Step 4: Save the code and run the form. Observe the changes in the color of the form while
progress bars value increases. The label shows the value of the progress bar. The timer
event will be triggered after 1000 milliseconds. After every 1000 milliseconds the value of
progress bar will be increased by 5 which you can observe in label. The form color changes
according to that value.

Figure 4.10: Run Form showing status of progress Bar

4. Working with Toolbar and Setting up the
Image List Controls

Like status bar and progress bar we can also have our own tool bar in our application. This can look
identical to VB’s standard toolbar. Along with menu if you add tool bar to your application it gives a
professional look to your application. Toolbars are seen in almost every application, and gives users
quick access to regularly used features like open, new, close, save etc. Microsoft offers a toolbar
control in its Common Controls which makes it very easy to add a toolbar to your own application.
Creating a toolbar in Visual Basic is a multi step process, and all the steps are discussed in detail in this
section.

To add the Toolbar control to your VB project, click Project — Components menu, and check the
box next to “Microsoft Windows Common Controls xx” where x is the version of Visual Basic you
are using. This we have already done in the previous sections. The Toolbar control is as shown in the
figure 4.11.

Figure 4.11: Toolbar Control on the toolbox

A toolbar control contains a collection of button objects used to create the toolbar. These button
objects correspond to the application in your project. You can display text as well as images on these
buttons. Text can be displayed using caption property. And if you want images to appear on these
buttons; first you need to add those images in image list control.

The ImageList control is used to store a number of images used by other controls at runtime. This
control maintains a series of bitmaps in its memory so that any control can access it quickly at
runtime. To use ImageList control in a project, add the windows common Controls — 2 component.
Image list control is as shown in the Figure 4.12. If you want to set the images at design time, the
associated ImageList control must be on the same form as the toolbar control. After the images are
stored in an ImageList control, you set the ImageList property of the toolbar control to be the name of the
ImageList control.

Figure 4.12: Image control on tooibox

Designing toolbar includes man

¥ steps. Following steps will guide you to understand the procedure
to design tool bar:

Step 1: First of all we need Toolbar and ImageList control added on your toolbox. For this Select

Project — Component option from VB main menu. (Figure 4.13)

Figure 4.13: Project > Component menu

It will open component dialog box. Search for “Microsoft Windows
you will get both the controls enclosed in this.
Figure 4.14. Click on OK button. Now you can se

Common Controls*
Select the Check box as shown in the

¢ many controls added on your tool box

two of them are ImageList and Toolbar controls. Refer Figure 4.13 and Figure 4.14 to
identify these controls.

Masiatdt Sevirdo Lot .
Mionsilt Yl Do totest £ 0 (508

Heoudd Wiae tomraticn

Figure 4.14

Step 2: First of all select Toolbar control from toolbox and Place it on the form. Second, Select
ImageList control and then place it on the form. As shown in the Figure 4.15. ImageList
Control is invisible at run time. Initially Toolbar control will not look prominently. Don’t
worry about that right now. At this point it is empty. We need to add ‘buttons’ to it.

Figure 4.15: ImageList and Toolbar control on the form

Step 3: First we will add icons to the image list control that you want to appear on the toolbar, to
do that, open the Properties page for the ImageList Control. Select (Custom)... or right
click on the ImageList Control and Select Properties option.

tiveX Controls, ..

Figure 4.16

This will open the Property Page for the ImageList control as shown in the Figure 4.17.

Figure 4.17

By default General tab is selected. It shows the Information about the size of the buttons
that you will see on the Toolbar. Select 32 x 32 option button.

Figure 4.18

This is enough large toolbar icons. Now we will start adding images to the ImageList
control. We do that by selecting the Images tab...

wiy Pages

’ Figure 4.19

Now select the Insert Picture button it will ask us for an image to add to the ImageList
control. You can select any of the image.

Figure 4.20

As soon as you open the image, that image is added into the list of the ImageList control.
See the following screen. You can see the Cabinet image in the list. As this is first image
its index value is 1 and an Image Count Property also 1.

Figure 4.21

Each image in the ImageList Control can be referred to by its Index value. The toolbar
control will use the Index value to refer to each Image.

Use the same procedure to add images to the ImageList Control. You can see Remove
Picture on the property page. We can remove images if we wish by selecting this button.
In this example 3 more images have been added to the ImageList control. Your property
page should look like the following screen. These many images are enough for now.

Figure 4.22

Step 4: Now we have added enough images to the ImageList control. Now set the properties in the
Toolbar control. Add buttons that will appear on the toolbar, and set the images which we
have right now added to ImageList Control.

Hence, open Toolbar property page. For this select Custom from property window or right
click on the Toolbar Control on the form.

Figure 4.23

Programming in VB

Figure 4.24

You can see toolbar property page is more complicated than ImageList property page. Here
we will see how to add buttons to the toolbar, associate them with an image in the
ImageList control. In General tab you can see third item i.e. ImageList dropdown list box.
We need to tell the toolbar control where to {ind the images for the buttons that we’re about
to add. For this purpose click on the dropdown ListBox for the ImageList property and
select the ImageList Control that contains our images. When you click on the ImageList
dropdown list box it will display ImageList] control name. You just select it. This means
we’ve associated our Toolbar with an ImageList control.

Figure 4.25

The next step is to start adding buttons to the toolbar. We do that by selecting the Buttons tab.

Figure 4.26

Through this tab you can add as many as buttons you want to your toolbar. Initially the
Index property for the Buttons tab is dimmed that means toolbar has no buttons. To add
buttons to the toolbar click on ‘Insert Button’.

Figure 4.27

Once we click on ‘Insert Button’, the index property of the Buttons becomes undimmed. It
becomes 1, indicating we are editing the Property values for the first button on the toolbar.
We can now associate an image in the ImageList control with this button. To do that,
specify the Index value of the appropriate image in the ImageList in the Image Property of
the Buttons tab. As shown in the following screen.

Figure 4.28

By specifying a value of 1 for the Image Property of the first button, we are telling Visual
Basic to display the Cabinet icon as the image for the first button. If we now click on the
Apply button, we’ll see that our toolbar now looks like this. ..

Figure 4.29

You can provide additional help to the tool bar by displaying ToolTip Text for the buttons
we add to the Toolbar by writing the name of the button in the ToolTipText Property of the
Buttons tab.

Same way you can keep adding button to the tool bar i.e. press “Insert Button” and adding
index number to the “Image” textbox, Write some value to the Tooltip text textbox.

Figure 4.31

You can insert a ‘gap’ or separator between groups of buttons. To do that, click on ‘Insert

Button’, but this time instead of specifying a value for the Image Property, leave it at 0, and
specify a value of 3-tbrSeparator for the Style Property.

Figure 4.32

After inserting separétor add one more button; specify the Image and Tooltip text and now
you will be able to see the separator or gap between the buttons.

Figure 4.33

At this point, we have a Toolbar that looks beautiful as in F igure 4.33, but its not working.
If you run this form now you can click the button on the tool bar but they wouldn’t work.
We need to write some code to that buttons if we want these buttons should trigger some
action.

One problem here is that the individual buttons on the Toolbar do not have their own
events. There are only events associated with the Toolbar control itself. So, if we want to
write code to perform some action when a particular button on the toolbar is clicked, we
first need to distinguish which button has been clicked. If you double click on the toolbar
control it will open the ButtonClick Event Procedure as shown in the F: igure 4.34.

Figure 4.34

The ButtonClick Event Procedure of the toolbar is passed an Object Variable representing
the button on the Toolbar that has been clicked. We can determine the Index value of that
button to determine which button has been clicked. Knowing that, we can write code that is
triggered when a particular button is clicked.

Suppose we want to write code for our toolbar. We have now 4 buttons out of which button
number 3 is separator. Therefore it does not require any code. So we can write code for the
button 1, 2 and 4. Check the following code here we have written code for the button 1 and
2. If you click Button 1 it will open a message box window. And button 2 will close the
application. The same way you can open another form or can perform any valid VB
operations through this buttons.

Private Sub Toolbarl ButtonClick (Byval Button As

ComctlLib.Button)

If Button.Index = 1 Then

MsgBox "Very Good!!! You did very good job."
ElseIf Button.Index = 2 Then

Unload Me '

End
End If

End Sub

ctiveX Controls...

5. Study of Different Dialog Boxes

We all are familiar with windows common dialog boxes like Open, Save, Print, font dialog boxes.
Dialog boxes are used to create professional applications that have the same menu and dialog box
structure as most windows application. In Visual Basic 6.0 we have the facility to build the common
dialog box in our application using the CommonDialog ActiveX control. You can save lot of
programming time by using Common Dialog control, as well as provide a standard Windows look to
certain parts of your program.

In this session we will discuss how to add common dialog control in our application.

To add this control select Project — Components menu — Microsoft Common Dialog Control 6.0
on the Controls tab in the Components window as shown in the following figure. Then, the control
icon will appear in your toolbox and you can add it as a form like any other control. At run time, it's
invisible until you need it.

Figure 4.35

There are six types of dialog box with this control. You choose the dialog box you need by the
method you call on the control.

The lists of all six types of dialog boxes are:

A o

ShowOpen: Shows a File Open dialog box.
ShowSave: Shows a File Save dialog box.
ShowColor: Shows a Select Color dialog box.
ShowFont: Shows a Font Selection dialog box.
ShowPrinter: Shows a Print/Print Options dialog box.
ShowHelp: Shows the help dialog box.

To display any of the common dialog boxes you must call it using showXXX method. For example,
ShowColor to open color dialog box, ShowFont for Font dialog box. Each dialog box has a number
of properties that you can use. Most of the properties are optional. Some are common to all dialog

boxes.

Some of the properties of dialog box are discussed as follows:

Each dialog box has a cancel button, which should signal to your application the user's
intention to cancel the current operation.

This property sets the string displayed in the title bar of the dialog box.

Used to adjust the function of each common dialog box. The value of the flag will vary depending
on the specific dialog box being opened. All the flags of all the dialog box control are discussed in
the following tables.

This property is used to the Print and Font dialog box.

This property determines which dialog to display. Or you can use Showxxx method to display
specific dialog box.

Common dialog control flags

1 File Op

cdiOFNAllowMultiselect

en/Save Dialog

Specifies that the File Name list box allows multiple selections.

The user can select more than one file at run time by pressing the SHIFT key
and using the UP ARROW and DOWN ARROW keys to select the desired
files. When this is done, the FileName property returns a string containing the
names of all selected files. The names in the string are delimited by spaces.

cdIOFNCreatePrompt Specifies that the dialog box prompts the user to create a file that doesn't
currently exist. This flag automatically sets the cdlOFNPathMustExist and
cdiOFNFileMustExist flags.

cdIOFNEXxplorer Use the Explorer-like Open A File dialog box template. Common dialogs that
use this flag do not work under Windows NT using the Windows 95 shell.

CdIOFNEXxtensionDifferent Indicates that the extension of the returned filename is different from the

extension specified by the DefaultExt property. This flag isn't set if the
DefaultExt property is Null, if the extensions match, or if the file has no
extension. This flag value can be checked upon closing the dialog box.

With ActiveX Controls. ..

cdlOFNFileMustExist

Specifies that the user can enter only names of existing files in the File Name
text box. If this flag is set and the user enters an invalid filename, a warning is
displayed. This flag automatically sets the cdlOFNPathMustExist flag.

cdIOFNHelpButton Causes the dialog box to display the Help button.

cdlOFNHideReadOnly Hides the Read Only check box.

cdlOFNLongNames Use long filenames,

cdlIOFNNoChangeDir Forces the dialog box to set the current directory to what it was when the

dialog box was opened.

CdIOFNNoDereferencelinks

Do not dereference shell links (also known as shortcuts). By default, choosing
a shell link causes it to be dereference by the shell.

cdiOFNNoLongNames

Do not use long file names.

CdIOFNNoReadOnlyReturn

Specifies that the retured file won't have the Read Only attribute set and
won't be in a write-protected directory.

cdlOFNNoValidate

Specifies that the common dialog box allows invalid characters in the returned
filename.

cdlOFNOverwritePrompt

Causes the Save As dialog box to generate a message box if the selected file
already exists. The user must confirm whether to overwrite the file.

cdlOFNPathMustExist

Specifies that the user can enter only valid paths. If this flag is set and the user
enters an invalid path, a warning message is displayed.

cdlOFNReadOnly

Causes the Read Only check box to be initially checked when the dialog box is
created. This flag also indicates the state of the Read Only check box when
the dialog box is closed.

CdIOFNShareAware

Specifies that sharing violation errors will be ignored.

2. Color Dialog Box Flags

cdiCCFullOpen

Entire dialog box is displayed, including the Define Custom Colors

section.
Causes the dialog box to display a Help button.

Disables the Define Custom Colors command button and prevents the
user from defining custom colors.

Sets the initial color value for the dialog box.

cdICCShowHelp
cdiCCPreventFullOpen

cdICCRGBInit

3. Fonts Dialog Box Flags

cdICFANSIONly

Specifies that the dialog box allows only a selection of the fonts that use the
Windows character set. If this flag is set, the user won't be able to select a
font that contains only symboals.

cdICFApply
cdICFBoth

Enables the Apply button on the dialog box.
Causes the dialog box to list the available printer and screen fonts. The hDC

®

property identifies the device context associated with the printer.

cdICFEffects Specifies that the dialog box enables strikethrough, underline, and color
effects.
cdICFFixedPitchOnly | Specifies that the dialog box selects only fixed-pitch fonts.

cdICFForceFontExist

Specifies that an error message box is displayed if the user attémpts to
select a font or style that doesn't exist.

cdICFHelpButton Causes the dialog box to display a Help button.

cdiCFLimitSize Specifies that the dialog box selects only font sizes within the range specified
by the Min and Max properties.

cdICFNoFaceSel No font name selected.

cdICFNoSimulations | Specifies that the dialog box doesn't allow Graphic Device Interface (GDI)
font simulations.

cdICFNoSizeSel No font size selected.

cdICFNoStyleSel No style was selected.

cdICFNoVectorFonts | Specifies that the dialog box doesn't allow vector-font selections. _

cdICFPrinterFonts Causes the dialog box to list only the fonts supported by the printer, specified
by the hDC property.

cdICFScalableOnly Specifies that the dialog box allows only the selection of fonts that can be

scaled.

cdICFScreenFonts

Causes the dialog box to list only the screen fonts supported by the system.

cdICFTTOnly

Specifies that the dialog box allows only the selection of TrueType fonts.

cdiCFWYSIWYG

Specifies that the dialog box allows only the selection of fonts that are
available on both the printer and on screen. If this flag is set, the cdiCFBoth
and cdICFScalableOnly flags should also be set. '

cdiPDAlIPages

Printer Dialog Box Fl

 Description.
Returns or sets the state of the All Pages option button.

cdiPDCollate

Returns or sets the state of the Collate check box.

cdIPDDisablePrintToFile

Disables the Print To File check box.

cdIPDHelpButton

Causes the dialog box to display the Help button.

cdIPDHidePrintToFile

Hides the Print To File check box.

cdIPDNoPageNums Disables the Pages option button and the associated edit control.
cdiPDNoSelection Disables the Selection option button:
cdiPDNoWarning Prevents a warning message from being displayed when there is no

default printer. -

cdIPDPageNums

Returns or sets the state of the Pages option button.

 ActiveX Controls. ..

.cdIPDPrintSetup

Causes the system to display the Print Setup dialog box rather than
the Print dialog box.

cdiPDPrintToFile

Returns or sets the state of the Print To File check box.

cdiPDReturnDC

Returns a device context for the printer selection made in the dialog
box. The device context is returned in the dialog box's hDC property.

cdIPDReturnDefauit

Returns default printer name.

cdiPDReturniC

Returns an information context for the printer selection made in the
dialog box. An information context provides a fast way to get
information about the device without creating a device context. The
information context is returned in the dialog box's hDC property.

cdiPDSelection

Returns or sets the state of the Selection option button. If neither
cdlPDPageNums nor cdiPDSelection is specified, the All option
button is in the selected state.

cdIPDUseDevModeCopies

If a printer driver doesn't support multiple copies, setting this flag

disables the copies edit control. If a driver does support mulitiple

copies, setting this flag indicates that the dialog box stores the
requested number of copies in the Copies property.

5. Help Constants

cdiHelpCommandHelp

Displays Help for a particuiar command.

cdiHelpContents

Displays the contents topic in the current Help file.

cdiHelpContext

Displays Help for a particular topic.

cdiHelpContextPopup

Displays a topic identified by a context number.

cdiHelpForceFile

Creates a Help file that displays text in only one font.

cdiHelpHelpOnHelp

Displays Help for using the Help application itself.

cdiHelpindex Displays the index of the specified Help file.

cdlHelpKey Displays Help for a particular keyword.

cdiHelpPartialKey Calls the search engine in Windows Help.

cdiHelpQuit Notifies the Help application that the specified Help file is no longer in use.
cdiHelpSetContents Designates a specific topic as the contents topic.

cdiHelpSetindex

Sets the current index for multi-index Help.

Example

The following example demonstrates all types of dialog boxes and its application. Follow the steps

given below:

®

1. We have added Common dialog box control in the toolbox. Display it on the form. The form
should look like following figurc. The control is visible at design time but invisible at run
time. '

Figure 4.36

2. You need some interface to open the dialog box. We will use command button to open the
dialog box. Design the form as shown below. This form contains six command buttons for six
dialog boxes, one label and Common Dialog control.

Figure 4.37

3. Set the properties and write the code on click event of the entire command button to open all
the common dialog boxes.

X Controlg...

Name Label1

Caption | Using font Dialog box

Name

cmdColor

Caption

Show Color

Code

Private Sub cmdColor_Click()
CommonDialogl.Flags = cdlCCRGBInit
CommonDialogl.ShowColor
- frmcommondialog.BackColor = CommonDialogl.Color
End Sub

Name

cmdFont

Caption

Show Font

Code

Private Sub cmdFont_Click ()
CommonDialogl.Flags = cdlCFBoth + cdlCFEffects
CommonDialogl.ShowFont
Labell.Font.Name = CommonDialegl.FontName
Labell.Font.Size = CommonDialogl.FontSize
Labell.Font.Bold = CommonDialogl.FontBold
Labell.Font.Underline =
CommonDialogl.FontUnderline
Labell.ForeColor = CommonDialogl.Color
End Sub

Name

cmdSave

Caption

Show Save

Code

Private Sub cmdSave_Click ()
CommonDialogl.ShowSave
Labell.Caption = "FileName = &

CommonDialogl.FileName

End Sub

Name

cmdOpen

Caption

Show Open

Code

Private Sub cmdOpen_Click ()
CommonDialogl.DialogTitle = "Open File"
CommonDialogl.Filter = "Text (*.txt) | *.txt"
CommonDialogl.ShowOpen
Labell.Caption = "FileName = " &

CommonDialogl.FileName

End Sub

Name cmdHelp

Caption Show Help

Code Private sSub omdHelp Click ()
Commonbialogl.DialogTitle = "Help"
Commonblialogl.Helptile = "windows.hlp"

CommonDialogl.HelpCommand = cdlHelpContents
CommonDialogl.ShowHolp
End Sub

Name cmdPrint

Caption | Show Print
Private Sub cmdPrint Click ()

CommonDialogl.DialogTitle = "Print File"
c CommonDialogl.ShowPrinter
ode MsgBox "Orientation = " & CommonDialogl.Orientation
& "Coples = " & CommonDialogl.Copies
End Sub
4. Save and run the application and check all the operations. Following figures shows the

different dialog box displayed when you run this application.

entating € PCopis

Figure 4.38: Showing Font Dialog Box

Nith ActiveX Controls, ..

Figure 4.39

Figure 4.40: Showing Color dialog box

Figure 4.41: Save Dialog box

Figure 4.42: Help Dialog Box

/X Controls. .

Figure 4.43: Print Dialog box

6. Creating a Menu System

We all are familiar with the windows menu system, it is one of the important and attractive item in
Graphical User Interface. Visual Basic IDE also have menu similar to Microsoft Office menus. Most
of the options are also similar. Microsoft has the consistency in designing the windows. All the
Microsoft products windows look alike so that the user can work easily. Like VB standard menu you
can design your own menu for your applications.

Menus are used to organize large number of options. They are fixed on the window. You can on / off
tool bars but menus are always there on the screen. It is the standard way to interact with your
application. You can use it with or without keyboard. Designing proper menu is one of the most
important feature in developing an application because it is the gateway of your application.
It should be user friendly so that user can easily handle your application,

Figure 4.44: Visual Basic menu

You can see standard Visual Basic menu in Figure 4.44. You can have your own menu similar to
this menu. In this unit we will learn designing your dynamic menu system, short cut keys to use
menu, pop up menus etc.

6.1 Designing the Menu

Before starting designing menu let us understand all the components
of the menu. In Figure 4.45 you can see Visual basic Tools menu
and its sub menus. Usually all the menu options appear in menu bar
as shown in Figure 4.44. When you click any specific menu item it
opens its sub menu options called as pull down menu.

Now let’s discuss about the entire components of the menu. Refer F igure 4.45 to understand the
following description. The menu options on the menu bar are Tt op level menu (Tools is the top level
menu). When you click top level menu it opens its pull down menu. It is called as command. These
commands can have submenu or it may execute directly. Submenus can also have other submenus.
There is no limit on the number of submenus but more submenus can create confusion. Up to two or
maximum three submenus are generally seen in the practice. (Publish menu has submenu) When the
menu is not accessible to the user it is disabled or grayed out (Add procedure menu is grayed). But
there should not be too many disabled menus instead you can add or remove menus at run time. To -
access the menu through keyboard you can create access key or it is also called as hot key. User can
directly select the command by choosing access character and Alt key. The underlined character in
the menu is called as an Access character. These keys are faster than selecting item through mouse.
(T is access key in Tools menu) When you select any item it is highlighted by blue color (Publish
menu is selected in the Figure 4.45). You can see there are three dots (...) with some menu items. It
is called as ellipses. When you select ellipses it opens a dialog box. You have to reply that dialog
box to execute that command. (If you select Menu Editor. .. option it will open menu editor window
through which you can create your own menu.) One more component of menu is short cut keys.
Shortcut keys provide an easier and quicker method of navigating and using the menu
(Ctrl + E is the short cut for Menu editor option) you can directly access that command by the short
cut key without selecting main menu. It saves your time. You cannot assign short cut key to top level
menu. If you have more items in the menu you can group the items and can put separator bar. To
create separator bar put Hyphen (-) character in the Caption property in the menu editor. But even
these separator items must be assigned a unique value for the Name property.

Top Level Menu

Command

Selected ltem

Indicate submenu

Sub Menu

Figure 4.45: Different components of Menu

iyeX Controls. ..

You can create your own menu similar to standard VB menu which we have discussed in the above
section. Here we have discussed all the components of mem.

Figure 4.46: Menu Editor Button on tool bar

Visual basic provides menu editor to design menus. You can open menu editor by selecting
Tools — Menu Editor option from main menu (you can see Menu Editor Menu in the Figure 4.46)
or selecting Menu Editor Icon from standard tool bar (Figure 4.46). Or Press Ctrl + E short cut key
to activate menu editor. You can also display the Menu Editor window by right elicking on the Form
and selecting Menu Editor (Figure 4.46).

Figure 4.47

Menu Caption which
you will see on form

Left Arrow
Remove submenu

Right Arrow
Add submenu

Up Arrow
Move selected

Figure 4.48: Visual Basic Menu Editor

The above window (Figure 4.48) will appear once you activate Menu Editor. The Menu Editor
command is disabled unless the form is visible. Now before building menu with menu editor one
should understand the use of all the components given on the menu editor.

1.

:v) .4_.

Caption: This item is similar to the label or command button’s caption property. It is the
value which is visible on the form. You have to give some caption to the menu so that it can
be visible on the form and it is possible to access it. As soon as you start typing the command's
caption, it also appears in a new line in the list at the bottom of the Menu Editor window. To
add more commands click Enter and type the Caption. Caption can be up to 40 characters
long. The caption can be combination of number, special characters, alphabets, spaces,
underscore. You can assign access key or hot key to the menu. Use & (ampersand) sign in
front of the letter which you want to make as an access key. (For example, &File: F will be
hot key, E&xit: x will be hot key) it makes that letter underlined in the caption. (&File — File
or E&xit — Exit) with the use of hot key you can pull down that menu by pressing and
holding down alt key and the letter which is underlined:

Name: Name value is not visible on the screen. But it is used in coding. If you forget to enter
a menu item's Name, the Menu Editor throws an error when you wish to close menu editor.
The prefix used with menu names is “mnu” as we have discussed in first unit that all control
names start with some naming convention so that you can easily identify which control is that.
Name cannot include spaces, keywords, and special characters.

Index: This item is used to create an array of menu commands. All the commands of the array
have the same name and unique index that distinguishes them. It is similar to the array of the
control.

Shortcut: At design time, you can assign the menu item a shortcut key so that your end users
don't have to go through the menu system each time they want to execute a frequent
command. The assigned shortcut key can't be queried at run time.

Enabled: Specifies whether a menu is disabled or not. A disabled command in a menu means
that feature is not available.

Visible: By using this check box you can make your menu command visible or invisible on
the screen.

Checked: This is unchecked by default and allows the programmer the option of creating a
checked menu item. A menu item that act as a toggle and displays a check mark when
selected. ' :

Window list: This option is used with MDI applications to maintain a list of all open
windows.

Next: Next moves you to the next menu item or inserts a new item if you are at the end of the
menu. The indentation of the new item starts out the same as the indentation of the previous
item. ALT+N is the access key

10. Insert: It inserts a menu item above the selected menu item. ALT+I is the access key to insert
new menu item.

11. Delete: Deletes or removes the currently selected menu item. You can use ALT+T access key
to delete the item. DEL key on the keyboard is also used for the same purpose.

12. Ok and Cancel: Click on the Ok button when you finished designing the menu. Cancel button
is used if you decided to cancel designing your menu.

13. Help Context ID: If you want to add help system you can use help context ID.

14. Left/ Right arrow:These buttons work with current menu items. When you want to create a
submenu, you press the Right Arrow button (or the Alt+R hot key).

15. Up / Down arrow: You can move items up and down in the hierarchy by clicking the
corresponding buttons or the hot keys Alt+U and Alt+B, respectively. Up and down arrows do
not change the indentation.

One drawback of the menu editor is that you cannot copy menu from one application to another
application. You can copy paste code or other controls like command button, text box etc. but it is
not possible to copy menu editor menus from one place to another.

So are you ready to create your menu system? Then let’s try it.

6.2 Creating the Menu with the Menu Editor

This section will give you an experience to create your menu system. Here I am creating menu with
an example along with its description. You just need to follow all the instructions given below.

In this example we will create a menu which will look like Figure 4.49.

Figure 4.49: Menu

This form (Figure 4.49) contains a menu bar with two menus i.e. File and Help. These are called the
Top level menu items.

If you click on The File menu, (shown in Figure 4.49), it will open pull-down menu having
submenus: New, Open, Save, Save As, Print, and Exit. The line appears below and above Print menu
and below Open menu is called as separator bar.

The Help menu contains just one item below it, i.e. 4bout menu.

Figure 4.50

Figure 4.50 and Figure 4.51 had shows your final output. Now let’s start from scratch.

As we have discussed earlier that to build menu you have Menu Editor. This appears as an icon in
the toolbar of the VB IDE. It is the circled item in the screen shot below

Figure 4.51: Menu Editor Icon

Alternatively, you can open the Menu Editor from the Tools menu item as shown below

/X Controls,,.

Figure 4.52: Menu Editor Option through tools menu

‘Step 1: Start a new VB project and invoke the Menu Editor using any of the method discussed

above.

1. Click the Menu Editor Toolbar icon or

2. Select the Menu Editor option from the Tools menu. or
3. Right click on the form and open menu editor or

4. Press Ctrl+E short cut key to invoke Menu Editor.

The Menu Editor screen appears, as shown below in the Figure 4.53. If you have studied
“section 5.1 designing the menu” well then you are already familiar with this window.

Figure 4.53: Menu Editor Window

Step 2: In “Caption” text box, type &File (The ampersand sign before “F”, will make “F” as an
access key for the File menu. It enables the user to drop down the File menu by keying
“ALCE™ on the keyboard in addition to clicking the “File” menu with the mouse).

)

In “Name"” text box, type mnul<ile. Keep remaining settings as it is. You cannot assign
short cut key to thiw menu wiat i Top level menu. Therefore to move ahead click on the
Near Button,

(Now onwards prelix every men name with “mnu™ convention).

Your Menu Fditor screen shoald look ke th

ARG

Figure 4.54

Nop V0 Dk the Tipht arrow” button (shown circled below). An ellipsis (...) will appear as the
ne e m the menu list, indicating that this item is a level-two item. (i.e. pull down menu
ol “f'lllc”).

TSR BRURY

Figure 4.55

ActiveX Controls. ..

Programming inve . -

In "Caption" text box, type & New; and in "Name" text box, type mnuNew, and create a
"Shorteut", select Crri+N. By specifying a shortcut, you allow the user to access the
associated menu item by pressing that key combination.

S0 here, you are providing the user three ways of invoking the "New" function

1. Clicking File, then clicking New on the menu;

2. Keying Alt+F, N (because we set up an access key for
to left of "N" in "New"); or

3. Keying Ctrl+N. _
At this point, your Menu Editor screen should look like this

"N" by placing an ampersand

Figure 4.56

Click the Next button.

Step4: In "Caption" text box, type &Open; in “Name" text box, type mnuOpen, an
"Shortcut", select Ctr/+0. Your Menu Editor screen should look like this:

Figure 4.57

Click the Next button.

Step 5: In "Caption" text box, type - (a hyphen), and in "Name" text box, type mnuFileBarl.
A single hyphen as the Caption for a menu item tells VB to create a separator bar at that
location. Your Menu Editor screen should look like this
Click the Next button.

Step 6: In "Caption" text box, type &Save; in "Name" text box, type mnuSave, and for "Shortcut",
select Ctrl+S. Your Menu Editor screen should look like this

X Controls. .

Click the Next button.

Step 7: In "Caption" text box, type Save &As ..., and in "Name" text box, type mnuSaveds. Your
Menu Editor screen should look like this

Click the Next button.

Step 8: In "Caption" text box, type -, and in "Name" text box, type mnuFileBar2. Your Menu
Editor screen should look like this

Figure 4.59

Click the Next button.

Step 9: In "Caption" text box, type &Print; in "Name" text box, type mnuPrint, and for "Shortcut",
select Ctri+P. Your Menu Editor screen should look like this :

Figure 4.60

Click the Next button.

Step 10: In "Caption" text box, type - and in "Name" text box, type mnuFileBar3. Your Menu
Editor screen should look like this:

Figure 4.61

Click the Next button.

Step 11: In "Caption" text box, type Exit, and in "Name" text box, type mnuExit. Your Menu Editor
screen should look like this

Click the Next button.

Step 12: Click the "left-arrow" button (shown circled below). The ellipsis (...) is removed, that
means we are back to the top-level items.

Figure 4.63

In "Caption" text box, type &Help; and in "Name" text box, type mnuHelp. Your Menu
Editor screen should look like this:

Click the Next button.

Step 13: Click the "right-arrow" button to create a level-two item below "Help". In "Caption" text

box, type &4bout; and in "Name" text box, type mnudbout. Your Menu Editor screen
should look like this:

Figure 4.64

Step 14: All the menu entries are done at this point, so click the OK button. That will close the menu
editor and return focus to the VB IDE.

Step 15: Your form will now have a menu, based on what you have set up in the Menu Editor. If
you click on a top-level menu item File or Help, the level-two menu will drop down. Or
you can also use Alt+F for File and Alt+H for Help to invoke both the menus with
keyboard. ‘

- Figure 4.64

Step 14: All the menu entries are done at this point, so click the OK button. That will close the menu
editor and return focus to the VB IDE.

Step 15: Your form will now have a menu, based on what you have set up in the Menu Editor. If
you click on a top-level menu item File or Help, the level-two menu will drop down. Or
you can also use Alt+F for File and Alt+H for Help to invoke both the menus with
keyboard. ’

Step 16:

Step 17:

Step 1 to 16 tell you how to design menu. Now let’s have a look on the events and coding
of the menu To perform any action through menu item we can write code for that menu
items. But remember that Click is the only event that a menu item can respond to.

Click on the Open menu item. The code window for the mnuOpen_Click event opens, as
shown below. ‘

Figure 4.66

Under the sub procedure mnuOpen_Click (), place the code you want to execute when the
user clicks the Open menu item. You can write any valid VB code over there. As this is
demo example we will place simple MsgBox statement in the event procedure:

MsgBox "Code for 'New' goes here.", vbInformation, "Menu Demo"
Add similar code for other menu items like New, Save, Save As, and Print menu. To open
sub procedure of that menu just click on the menu item on the form and VB will open code

window with the sub procedure for that menu. Or in code window select the menu item
from object list and its event from procedure list. Here it will be Click event for all objects.

Private Sub mnuNew Click ()

MsgBox "Code for 'New' goes here.", vbInformation,
"Menu Demo" :
End Sub
Private Sub mnuSave Click ()
MsgBox "Code for 'Save' goes hore.”, vhintormat ion,
"Menu Demo"
End Sub
Private Sub mnuSaveAs Click ()
MsgBox "Code for 'Save As' oo herel ™, vhilnlormal o,
"Menu Demo"
End Sub
Private Sub mnuPrint_click ()
MsgBox "Code for 'Print' goos here.', vbInformat lon,

"Meniu Demo™
End Sub

Step 18: For the Exir menu item Click event, code the statement Unload Me.

Private Sub mnuExit Click ()
Unload Me
End Sub

Step 19: For the About menu item Click event, code as shown below:
Private Sub mnudAbout Click ()

MsgBox "Menu..." & vbNewLine & “Copyrights 2009 M 8",
vbInformation, "Menu"
End Sub

We have finished coding. Now try your application.
Step 20: Run the program.

(If you have many forms in your project and this menu form is not currently selected as
startup object. you need to change start up object. Select Project menu — Project
Properties... This will open a dialog box as shown in the Figure 4.67. Select your form
name form the Startup Object List box and click OK button.)

Figure 4.67

1 ActivaX Contrals, .,

Step 21: Now run your application. Check how the code executes when you click on the various
menu items. Also test the use of the access keys (For example, Alt+F, N) and shortcut
keys (e.g., Ctrl-0).

Step 22: Save the program and exit VB.

Figure 4.68

6.3 Adding Shortcut and Access Keys to Menu Items

You must be agreeing that using the keyboard is sometimes faster than using mouse. Shortcut keys
can help you bypass menus and carry out commands directly. Shortcut keys are listed next to the
command name on menus. For example, on the File menu, the Save commands have the shortcut
CTRLAS. While you design your menu system throﬁgh VB menu editor there is one list box labeled
as shortcut, you can assign shortcut key for the menu item from this list. (See the circled item in
Figure 4.69)

Access keys are established when you give caption to the menu. You have to prefix the access letter
with & (ampersand) sign. An access key appears as underlined letters in the command itself.

For example, on File Menu F is access key.

Remember that you can assign access key to the top level menu but you cannot have short cut key to
top level menu. Both the keys must be unique for all menus in the application.

In the above section we have discussed one example of menu in details. In that example we have
already assigned shortcut keys and access keys to the menu items.

Assigning Access
key to H letter in
Help menu

Shortcut List box

Figure 4.69

7. Creating and Accessing Popup Menu

Along with tool bars another frequently used menu type is popup menu. It can appear anywhere
within the form or any control through the right mouse button. Normally it appears at the location of
the mouse click. Nearly every window application provides a popup menu also called as shortcut
menu or context menu. This menu can be displayed anywhere on a form or a control. It is invoked
with popupmneu method. The popup menu method is usually called from within textbox or
picturebox control because these controls can carry out edit operations.

The Syntax for the PopupMenu method
PopupMenu menuname, flags, x, y, boldcommand
Where,

Menuname: Required. The name of the pop-up menu to be displéyed. The specified menu must
have at least one submenu.

Flags: Optional. A value or constant that specifies the location and behavior of a pop-up menu,
described as follows:

vbPopupMénL'lLéftAhgn' N (Defauit) The left side of the pop-up menu is located at x.

vbPopupMenuCenterAlign The pop-up menu is centered at x.
vbPopupMenuRightAlign 8 The right side of the pop-up menu is located at x.

S

vbPopupMenuLeftButton 0 (Default) An item on the pop-up menu reacts to a mouse click only
when you use the left mouse button.

vbPopupMenuRightButton 2 An item on the pop-up menu reacts to a mouse click when you use
either the right or the left mouse button.

You can specify both "location" and "behavior" constant, by adding the two values together.
For example,
PopupMenu PMenu, vbPopupMenuRightAlign + vbPopupMenuRightButton .

X & Y: arguments are the coordinates of a point on the form or control where the menu will be
displayed. If x & y coordinates are ignored the popup menu will appear at the pointers location.

Boldcommand: Optional. Specifies the name of a menu control in the pop-up menu to display its
caption in bold text. If omitted, no controls in the pop-up menu appear in bold.

Popup menus are sometimes referred to as speed menus, right-click menus, or context menus. Popup
menus are generally invoked by right-clicking the mouse button. Most applications will display a
specific menu. It depends on the user context that which menu is shown hence the name context
menu.

7.1 Creating Pop-up Menu

Popup menus are created using menu editor. Make a top-level menu and set its visible property to
False. In the MouseDown event handler where you want to display the menu, make sure the right
button is pressed and then use PopupMenu to display the menu.

Now we will learn to create a popup menu through following examples. Follow the steps given
below: -

Example 1

In this example we will create a simple popup menu. This menu has four options. Menu will be
activated when you right click anywhere on the command button or on the form. If you select any of
the option it will display a message box.

Step 1: Start a new VB project, add a form and place a command button and label on the form and
set the following properties of both the controls: the form should look like Figure 4.70.
Command Button
Name: cmdPopupMenu.

Caption: “Show Popup Menu”
Font: Bold, size 14

Label

Name: 1bIMsg

Caption: “Right Click with mouse anywhere on the form to sec pop up menu”
Font: Bold, sizel2

Autosize: True

Figure 4.70

Step 2: Open the Menu Editor, and create a top-level item with a Caption valuc of Popup Menu
and the Name mnuPopup. Do not forget o uncheck the visible checkbox. To make menu as
a pop-up menu, it must be invisible. (See the circled item below)

Figure 4.71

Step 3:

Step 4:

Step 5:

Create level-two menu items below the Popup Menu top-level menu. When creating these
level-two items, keep the Visible box checked. Click right arrow to create submenu and
create three menu items at the same level as shown in the Figure 4.71. Those are as follows

Option &1 mnuOpt1
Option &2 mnuOpI2 |
Option &3 mnuOpt3 I

After entering all the menu items, your menu editor screen should look like Figure 4.72

Figure 4.72

Click OK to save and close your menu. When you return to the form, you will see only
label and command button there is no menu on the form. Because pop-up menu will only
be visible when invoked through code.

Now code the MouseDown event for command button and Form. The code is as shown
below. The Button parameter is tested for vbRightButton as is conventional, we only want
to pop up the menu if the user right-clicks on the label. If the user clicks the right mouse

button, the PopupMenu statement is executed. It is this statement that makes the pop-up
menu appears.
Option Explicit

Private Sub cmdPopupMenu_MouseDown (Button As Integer,
Shift As Integer, X As Single, Y As Single)

If Button And vbRightButton _
Then PopupMenu mnuPopup

End Sub

Private Sub Form_MouseDown (Button As Integer, Shift As

Integer, X As Single, Y As Single)
If Button And vbRightButton _
Then PopupMenu mnuPopup

End Sub

When you select any of the Option submenus it will trigger click event and display a
message box. So code for all the option menus i.e. optionl, option2 and option3 is as
shown below.

Private Sub mnuOptl Click ()
MsgBox "I am Option 1"

End Sub

Private Sub mnuCpt2_Click ()
MsgBox "I am Option 2"

End Sub

Private Subbmnqut3_Click ()
'MsgBox "I am Option 3"

End Sub
Save the code.

Step 7: Run the program and check out the various options you have coded.

Figure 4.73

Figure 4.74

Figure 4.75

Step 8: Save the application and exit VB,
Example 2

In this example we will try some more VB operations through popup menu. Create a VB project and
display one label on the form. Change the font color and font size of the label through popup menu.

Step 1: Start a new VB project and place a label on the form. Set the following properties of the
label control:
Name: IbiMsgText
Caption: Hello how are youl!ll!
Autosize: True

Figure 4.76

Step 2: Open the Menu Editor, and create a top-level & low-level menu as shown in the
Figure 4.76. Set top-level item with a Caption value of PopUpMenu and the Name
mnuPopuUpMenu. Also uncheck the visible checkbox and create other menu items. (As we
have practiced designing menu in the previous examples so it is considered that you know
how to design the following menu system as in Figure 4.76)

Figure 4.77

Step 3: Once you finished with designing menu system click OK to save and close menu editor.
You will see the form still look like the Figure 4.77. i.e. there is no any menu on the form.
As it is popup menu it is not visible at this point. It will activate when you write code for
that.

Step 4:

Step S:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Code the [biMsgText MouseDown event as shown below. This will pop up the menu only
if the user right-clicks on the label. It is not available on the form. If the user clicks the
right mouse button, the PopupMenu statement is executed. It is this statement that makes
the pop-up menu appears.

Option Explicit

Private Sub 1blMsgText_MouseDown (Button As Integer, Shift
As Integer, X As Single, Y As Single)

If Button = vbRightButton Then
PopupMenu mnuPopuUpMenu, vbPopupMenuRightButton
End If
End Sub

Code the mnuBlue_Click event as shown below. When you click on Blue menu item the
text color will become blue

Private Sub mnuBlue Click()
1blMsgText.ForeColor = vbBlue
End Sub

Code the mnuGreen_Click event as shown below. When you click on Green menu item the
text color will become Green

Private Sub mnuGreen Click ()
1blMsgText.ForeColor = vbGreen

End Sub

Code the mnuYellow_Click event as shown below. When you click on Yellow menu item
the text color will become Yellow ' :
Private Sub mnuYellow Click()

1blMsgText.ForeColor = vbYellow
End Sub
Code the mnusizel4_Click event as shown below. When you click on Size 14 menu item
the text Size will become 14
Private Sub mnusizel4 Click ()

1blMsgText.FontSize = 14
End Sub

Code the mnusizel6_Click event as shown below. When you click on Size 16 menu item
the text Size will become 16
Private Sub mnuSizelé Click()
1blMsgText.FontSize = 16
End Sub

Code the mnusizel8_Click event as shown below. When you click on Size 18 menu item
the text Size will become 18

Private Sub mnusizel8 Click ()
lblMsgText.FontSize = 18
End Sub

Step 11: Save the code. Now your application is now ready to run. Close the code window and
return to the VB IDE. Run the program and check out the various options you have coded.

o

ix|

Figure 4.78

Figure 4.79

8. Adding or Modifying Menu at Run Time
(Dynamic Menu)

This section describes the use and implementation of dynamic menu i.e. the menu which can be
changed at run time. You can add, delete or modify the menu items at run time. There are some
situations where user needs to do such operations. Fortunately VB6 provides this facility. Further
topic describes the dynamic menu in detail.

ctiveX Controls, ..

Menus created at design-time can be modified in runtime and are referred as dynamic menus. To
create a dynamic menu, you need to create a control array of menu items. But you have to create the
first item in design-time, and then you can dynamically add items in runtime using a control array. In
the menu editor window, add a menu item and set its index property to 0. You can then add
commands with the same name and consecutive index values. At design time you don’t have to add
more than one item. One menu item with index value set to 0 is sufficient to create the menu control
array. You can use this array’s name and an index number to add new option at run time. You can
hide the items you create in runtime using Hide method or setting the visible property to False.

Let’s follow the tradition and explain this too with an example. Follow the instruction given below.
You will learn how to design this menu. So ready!!!

In this example we will create a simple run time menu system,
Step 1: Create new VB project and open the Menu Editor.
Create two menu items

L. Caption: &MyMenu Name: mnuMyMenu and

2. Caption—Name: mnuMenuList, and do not forget to set Index property to 0. As
shown in the following Figure 4.80

Figure 4.80

Step 2: Display two command buttons on the form and set the following properties of the
command button :

Name: cmdAdd and cmdDel
Caption: “Add Menu [tem” and “Remove Menu Item”
Your screen should look like Figure 4.81

Figure 4.81

Add the following code to the cmdAdd Click () event. You can add menu items through
this event:
Private Sub cmdAdd_Click()

AddMenu
End Sub

Then, add this code to the cmdDel_Click () event. You can delete menu items through this
event:

Private Sub cmdDel Click{()
DelMenu
End Sub

Now, write the code for the Private Sub AddMenu (). This code will ask the user the
number of menu items he/she wants to add. And will insert that many items in that menu

Private Sub AddMenu ()
Dim i As Integer, J As Integer
Call DelMenu
j = InputBox ("How many elements you want to enter?")
For i = 1 To J
Load mnuMenulList (1)

mnuMenulList (i) .Caption = "Menu item " & 1
Next i
mnuMenulist (0).Visible = False
End Sub

Finally, add Private Sub DelMenu () with this code. This code will empty the menu
completely but leave the divider which is created in design-time

Private Sub DelMenu ()
Dim i As Integer
mnuMenulist (0) .Visible = True.

For i = 1 To mnuMenuList.UBound
Unload mnuMenuList (i)

Next 1

End Sub

Step 3: Save the code and run the project. If you click on the “MyMenu” menu, you'll see the

divider, as shown in Figure 4.82. But when you click on the Add Menu Items button one
input box will popup. (Figure 4.83) Asking you the how many number of elements you
want to insert? Enter any integer number into the textbox. And press OK button. Now click
on the MyMenu menu again, you will see menu items added in the menu as low level menu
items. The number of menu item will be equal to the number you have entered in the input
box. This time your screen should look like Figure 4.83. ‘

Figure 4.82: Menu with separator

Figure 4.83

Figure 4.84

Step 4: Now if you click on the “Remove Menu Item” command button it will delete all the menu
items inserted by “Add Menu Item” button only separator will remain because it was
created at the time of menu design. Now the screen will again look like Figure 4.84.

Enabling Menu Item in response to program state

You can enable or disable menu items at design time as well as at run time by using Enables
property of the menu. Set this property to True to enable and to false to disable the menu. If you
want to set this property at design time select or deselect \enabled checkbox on the menu editor. The
menu item will behave according to the selection of check box. Or you can set it through coding at
run time.

For example, if you want to make any menu disable at run time write the following code.

Figure 4.85

Private Sub mnuNew Click ()

mnuNew.Enabled = False
End Sub :
The same way you can make menu items visible or invisible at run time as well as design time.
Set visible property to true to make menu item visible or to false to make it invisible.
In the following example I have created one command button which makes the File menu visible and
invisible. The following code is written on the click event of the cmdVisible command button.

Figure 4.86

Private Sub cmdvisible Click()

If cmdVisible.Caption = "Visible" Then
mnuFile.Visible = True
cmdVigible.Caption = "Invigible™

Else

mnuFile.Visible = False
cmdvVisibkble.Caption = "vigible"
End If
End Sub

9. Adding Menu Item For MDI Child Form

MDI (Multiple Document Interface) Application is an application in
which we can view and work with several documents at once. MDI
was designed to simplify the exchange of information among
documents, all under the same roof. With the main application, you
can maintain multiple open windows, but not multiple copies of the
application.

" You almost certainly use Windows applications that can open multiple documents at the same time
and allow the user to switch among them with a mouse-click. Each document is displayed in its own
window, and all document windows have the same behavior. The main Form, or MDI Form, isn't
duplicated, but it acts as a container for all the windows, and it is called the parent window. The
windows in which the individual documents are displayed are called Child windows.

An MDI application must have at least two form, the parent form and one or more child forms. Each
of these forms have certain properties. There can be many child forms contained within the parent
form, but there can be only one parent form i.e. only one MDI form. The parent form may not
contain any controls except child forms. The parent form usually has its own menu.

You can add MDI form to your application using following steps

1. Start a new project

2 Select Project Menu — chooses “Add MDI Form” option.

3. Set the Form's caption to MDI Window

4. Select Project - Add Form to add a SDI Form.

5 Make this form as child of MDI form by setting the MDI Child property of the SDI form to
True. (You can make all the form child form to this MDI parent form by setting MDI child
property true.)

6. Set the caption property to MDI Child window.

VB6 automatically associates this new Form with the parent Form. This child Form can't exist
outside the parent Form; in the words, it can only be opened within the parent Form.

Programming in

Figure 4.87: Parent and Child Menu

- The MDI Form usually has load and quit menu for the application. The child Form is nothing but the
general VB form having any number of controls, operations and code for any event. When the child
Form is loaded, the child Form's menu replaces the original menu on the MDI Form. As you can see
in the Figure 4.87 dynamic menu “MyMenu” which is designed with child form is now visible as
parent form’s menu.

Solved Programs

1. Write a menu driven program for:
i. Area of Circle
il Area of Rectangle

Solution

Declare X As Float

Declare Y As Float
Declare Choice As Integer
X= Val (InputBox ("Enter a number:"))

Y= Val (InputBox ("Enter a number:"))
Call InputChoice(Choice)

Select Case OQOf Choice

Case: 1
tall Circle (X)
Case: 2

"fall Rectangle(X,Y)
hefault:

Write "Input not understood. Run the program again."
End Case
End Program

Subprogram InputChoice (Integer Choice As Ref)

Write "Enter 1 to compute the area of a circle
Write "Enter 2 to compute the area of a rectangle "
Input Choice

End Subprogram

Subprogram Circle (Float X)
Declare A As Float

Set A = 3.14*X"2

Write "The area of the circle is:"
Write A

End Subprogram

Subprogram rectangle(Float X, Float Y)
Declare A As Float

Set A = X * Y

Write "The area of the rectangle isg:"
Write A

End Subprogram

2. Write a menu driven program in VB to perform the
following:

i. Area of Square
ii. Area of Rectangle
ili. Area of Triangle

Solution

Declare X As Float

Declare Y Ag Float
Declare Choice As Integer
X= Val (InputBox ("Enter a number:"))

Y= Val (InputBox ("Enter a number:"))
Call InputChoice(Choice)

Select Case Of Choice

Case: 1

Call Square(X)

Case: 2

Call Rectangle(X,Y)

Case: 3 .

Call Triangle(X,Y)

Default:

Write "Input not understood. Run the program again."
End Case

End Program

Subprogram InputChoice(Integer Choice As Ref)

Write "Enter 1 to compute the area of a square "
Write "Enter 2 to compute the area of a rectangle "
Write "Enter 3 to compute the area of a triangle "
Input Choice

End Subprogram

Subprogram Square (Float X)

Declare A As Float

Set A = X*2

Write "The area of the square is:"
Write A

End Subprogram

Subprogram rectangle (Float X, Float Y)
Declare A As Float

Set A = X * Y

Write "The area of the rectangle is:"
Write A

End Subprogram

Subprogram Triangle (Float X, Float Y)
Declare A As Float

X Contrals. ..

Set A = x X* Y

Write "The area of the triangle ig:"

Write A

End Subprogram

3. Write a Menu Driven Program in VB for calculating:
I Area of Circle ii. Area of Rectangle

Solution
Option Explicit
Dim r as integer, 1 as Integer, b as Integer, area as Integer
Private Sub mnuCircle Click()
r = InputBox("Enter Radius: ")
area = 3.,14*r*r
MsgBox “The area of circle is: “& area
End Sub
Private Sub mnuRectangle Click ()

1l = InputBox ("Enter Length of Rectangle: ")

b = InputBox("Enter Breadth of Rectangle: ")

area = 1 * Db

MsgBox “The area of Rectangle is: ”“& area
End Sub

Private Sub mnuExit Click()

Unload Me
End Sub

4. Write a VB Program to display even numbers from an
Array.

Solution
Option Explicit
Dim num(l To 10) As Integer
Dim i As Integer
Private Sub cmdArray_Click ()
For i=1 To 10
num(i)=InputBox ("Enter an integer number")
If (num{(i)mod 2=0) Then
Print num (i)
End If
Next i
End Sub

5. Write a menu driven program in VB for:
i. Addition ii. Subtraction
iii. Multiplication iv. Division

Solution

Option Explicit

Dim x, v, z

Private Sub mnuAdd_Click()

X = InputBox("Enter first number: ")

vy = InputBox("Enter first number: ")

Z =X +y

Print "Addition of two numbers is: " & z
End Sub .

Private Sub mnubiv_Click()

X = InputBox ("Enter first number: ")

y = InputBox ("Enter first number: ™)

z =x/y

Print "Division of two numbers is: " & z
End Sub
Private Sub mnumul Click()

X InputBox ("Enter first number: ")

v InputBox ("Enter first number: ")

zZ =X *vy

[

Oct.11, Apr.10 - 4m

2

Print "Multiplication of two numbers is: " & z

~End Sub
Private Sub mnusub_ Click()

X = InputBox ("Enter first number: ")

Yy = InputBox ("Enter first number: ")

Z =X -y

Print "Subtraction of two numbers is: " & z
End Sub -

PU Questions
S

[Apr.12,0ct.12 — 4M] 1. Explain the property settings: To Hide Data Control of Runtime.
U Marks
[Apr.2013 — 4M] 1. Write Short note on: MDI
[Apr.2013 - 4M] 2. Write Short note on: Popup menu
[Apr.2013 — 4M] 3. Write Short note on: Progress Bar
[Apr.2013 — 4M] 4. Write a menu driven program for:
i Area of Circle oL Area of Rectangle
[Oct.2012 - 41 5. Explain the following property settings:
1. Property used to select *.doc files from a file list box
control.
. Property used to specify the high end range of the scroll
bar control.
[0ct.2012 - 41 6. Write Short note on: List View Control
[Oct.2012 — 4M) 7. Write Short note on: Status Bar
[Oct.2012 — 4M] 8. Write Short note on: MDI
[Oct.2012 — 4/ 9. How to create a Menu? Explain with an example.

10. Write a menu driven program in VB to perform the following; [Oct.12, Apr.11 - 4M]
1. Area of Square
ii. Area of Rectangle
iti. Area of Triangle

[Apr.2012 — 4M]

[Apr.2012 — 4M]
[Oct.10, Apr.13 — 4M]

11. Explain Message Box with Syntax and example.
12. What is Menu? How to create Menus using Menu Editor?

13. Write a menu driven program for:
1. Area of Circle.
1. Area of Rectangle.

14. Write a VB Program to display even numbers from an Array. [Apr.2012 — 4M)
15. Write a VB Program to display age in year, month and days. [Apr.2012 — 4M]
16. Write a menu driven program in VB for: [0ct.2011 — 4M]
1. Addition ii. Subtraction
ii. Multiplication iv. Division
17. Write a short note: Tool Bar ' [Oct.2011 — 4M]
18. Write a short note: Menus in Visual Basic [Oct.11,10 — 4M]
19. Explain ImageList Control in detail. [Apr.2011 — 4M]
20. Write short note on: Tabstrip Control [Apr.2011 — 4M]
21. Differentiate between Simple Form and MDI Form. [Apr.2011 — 4M]
22. Write short note on: Status Bar [0ct.2010 — 4M]
23. Explain briefly MDI Form. How it differs from simple Form? [0ct.2010 — 4M]

1. Write short notes

.) - —
a. Predefined Dialog Boxes. b. Progress Bar [Apr.2012 - M)
2. Write short notes on: Predefined Dialog Box and Progress Bar. [Apr.2010 — 8M]
3. Write short notes on: MDI and Popup Menu. [Apr.2010 — 8M]
4. How do you create menus in Visual Basic?

Oct.2010 — 8

[Apr.2012 — 10M)]

With ActiveX Contrals...

1. Explain the following property settings:

a. Property to Set Font Size using Common Dialog
Box. '

b. To Status Bar for your program.

C. Property used to Set Timer Control.

d Property used to place a picture on a Command
Button.

e. To resize Image Control.

(e
vISio

Chapten 5
WORKING WITH

DATABASE

1. Introduction

A database is a collection of information that is organized so that it can easily be accessed, managed,
and updated. It is a structured collection of records or data that is stored in a computer system.
In simple terms we can say that database is a collection of information. The most common example
of a database is a phone book, which is a collection of names, addresses, and phone numbers.
Each line in a phone book is a record that contains the information for a single person or family. The
entire set of records that is, all the listings in the book is a table. Another important characteristic a
phone book has in common with most databases is that information is presented in a spec1ﬁc order in
the case of the phone book, alphabetically by last name.

Databases are similar to phone books in that they provide a way to store and retrieve information
easily and quickly. You can also show relationship in database. Those types of databases are called
as relational databases. The language used for accessing, updating, modifying the databases is
Structured Query Language (SQL). It is a standard language through which you can write queries for
database management systems such as Microsoft's Access and database products from Oracle,
Sybase etc.

In this unit we will understand how to handle database through Visual Basic. Visual Basic has
standard controls which are used to perform database operations. In this unit you will learn how to
connect database and access, manipulate the records through data control and ADO control. It is
considered that you already know how to create database. Here in this unit we will directly start with
using that database.

Programming Working with Databese

2. Data Control

Data control is available on VB toolbar. It provides an interface for navigating data. You can move
around in a database from record to record and display and manipulate data from the records in
bound controls. This control displays a set of arrow buttons the user can manipulate to move through
a data base and the records from that database are displayed in bound controls. You can perform
most data access operations using the data control without writing any code. The data controls
database and recordset properties refer to those database and recordset objects and you can
manipulate the data using those properties. For example, if you have SQL statement to execute, you
place that statement in the data controls record source property and the result appears in the recordset
property. To connect a data control to a database you just set the data control’s database name
property to the path and name of the access / jet database files you want to open. In record source
property select the table you want to work with.

The Data control also provides an interface for navigating data, with buttons for moving back and
forth through rows in a database table. Visual Basic 2005 has an equivalent control, the Binding
Navigator control, which also contains buttons for adding and deleting rows. (Figure 5.2)

Fields
A
~ TN
Last Name First Name Address Phone City
Rows
Figure 5.1

Figure 5.2: Form with Data Control

2.1
There are many properties of the data controls as follows:

1.

Studying the Properties and Methods of Data Control

Connect: It specifics the type of database. The default database is Microsoft Access. The
connect value is usually the name of the data file type.

a. RecordSetType: A Recordset object represents the records in a base table or the records
that result from running a query. You use Recordset objects to manipulate data in a
database at the record level.

Recordset is of three types ‘Table (0), Dynaset (1) and Snapshot (2).

In Table-type Recordset you can add, change, or delete records from a single database
table.

Dynasct-type Recordset is the result of a query that can have updatable records.
A dynasct-type Recordset object is a dynamic set of records that you can use to add,
change, or delete records from an underlying database table or tables. A dynaset-type
Recordset object can contain fields from one or more tables in a database.

Snapshot-type Recordset is a static copy of a set of records that you can use to find data
or gencerate reports. A snapshot-type Recordset object can contain fields from one or
more tables in a database but can't be updated.

Exclusive: This property has Boolean value i.e. true or false. That indicates whether the
underlying databasc for a Data control is opened for single-user or multi-user access. If it is
true the databasc is open for single-user access. No one else can open the database until it's
closed or if it is False (Default) The database is open for multi-user access. Other users can
open the databasc and have access to the data while it's open.

BOFAction, EOFAction: BOF stands for Beginning of the File and EOF stands for End of
File. These properties determine what happens when the data control has taken you to the
beginning and c¢nd of the database. The choices you have are to stay at the beginning or move
to the first record or actually add new record when you are at the end.

Default Type: This property specifies whether the JET engine or ODBC model is used.

When you add the controls on the form you may require changing the data in the databases.
Therefore we'll use a textbox for each of the fields so that we can both display and enter data
as needed. Each textbox will be a bound control, i.e. it is bound to a specific field from the
database. When we navigate through the database using the arrow buttons the content of each
textbox will always reflect the content of the current field. To bind the control to the database field
you need to set some properties of the data control, they are as follows:

i DataSource is the name of the Data Control. Remember that the DC specifies the name
of the database to use and the name of the table to access.

Itig with Database

1 DataField is the name of the field to bind. That field is selected from the content of the

table.

iii. DatabaseName: It names the location of source of data for a data control.

There are many methods of data control recordset that are discussed as follows:

Four methods are connected with these buttons. Follo

through code:

1. MoveFirst: Moves the pointer at first record from current location.
2. MovePrevious: Moves the pointer at previous record from current location.
3. MoveNext: Moves the pointer at Next record from current location.

4. MoveLast: Moves the pointer at last record from current location.

Figure 5.3 Data Control with 4 buttons

Figure 5.4 : First record and Previous

Figure 5.5 : Next and Last record

5

wing methods are used to navigate records

There are some methods that are used to add, delete, and search the records in the database:

i. AddNew: This method is used to add a new record in the table.

Syntax

Datal.Recordset.AddNew

ii. Delete: This method is used to delete current record from the table. You should use delete
with MoveNext method. So that the user can understand the record is deleted. If you have
deleted last record you can either move cursor on to the first record or display message about

end of the record.

Syntax
Datal.Recordset.Deloloe

For example,

Datal.Recordset .belete
Datal.Recordset .MovieNext

iii. Search: There are four methods uscd for scarching. Those are FindFirst, FindNext,
FindPrevious and FindLast. These methods can be used to search any field in the recordset for
a specific record.

Syntax .
DataControl.Recordset.FindFirst "fieldname - 'searchstring'"

- 2.2 Connectivity with MS-Access and Operations of
Database through Coding

Visual basic allows us to manage databases created with different database programs such as MS
Access, Dbase, Paradox etc. In this unit we are not dealing with how to create database files but we
will see how we can access their database files in VB. In following example, we will create a simple
database application which enables one to browse Author’s details. In this example we will see how
you can perform different operations in database through coding. To create this application, insert
the data control into the new form. Place the data control somewhere at the bottom of the form. To
be able to use the data control, we need to connect it to any database. We can create a database file
using any database application. Here in this example we will use the database files BIBLIO.MDB that
comes with VB6.

Follow the steps given below:

Step 1: Open new VB project and start designing the form as shown in the Figure 5.6. In this
example display a data control on the form (Datal), two labels, and four text boxes.

Set the properties of the data control Datal

Connect Access (this is default).

DatabaseName | C:\Program Files\Microsoft Visual Studio\VB98\BIBLIO.MDB (Select any of the
data base available on your system or create new).

RecordSource | Authors (Select any of the databases from the list).

Set the properties of the Text]

Data Source | Data1

DataField AU _ID (Select field from the list)
Font Bold ,12

ing with Databsse

Set the properties of the Text2

Daté "Sc')urce Data1

DataField Author (Select field from the list)
Font Bold ,12

Set the properties of both fhe labels

Caption A;utﬁbr Iﬂd for'Label1 and Name for Label2
Autosize | True

Font Bold ,12

Figure 5.6

Step 2: Run this form now. You can see the records displayed in the text boxes and you can
navigate the records using the arrow buttons of the data control.

Figure 5.7: Run form showing Author record

Step 3: Now add command buttons to the form as shown in the Figure 5.8. Set the visible property

of data control false so that it is not visible on the form at run time. Write the following code
for the command buttons.

Figure 5.8: Adding command buttons on the form

Private Sub cmdAdd_Click()
Datal.Recordset.AddNew
Text2.5etFocus

End Sub .

Private Sub cmdDelete Click()

Ans = MsgBox ("Are you sure you want to delete the

record?",vbYesNo, "Note")

If Ans = vbYes Then
Datal.Recordset.Delete
Datal.Recordset.MoveNext
If Datal.Recordset.EOF Then

MsgBox "No more records in the database"
End If .
End If

End Sub

Private Sub cmdFirst_Click(Index As Integer)
Datal.Recordset.MoveFirst

End Sub

Private Sub cmdLast Click()
Datal.Recordset.Movelast

End Sub

Private Sub cmdNext Click()
Datal.Recordset.MoveNext
If Datal.Recordset.EOF Then

Datal.Recordset.MoveFirst
End If
End Sub
Private Sub cmdPrev Click(Index As Integer)
Datal.Recordset.MovePrevious
If Datal.Recordset.BOF Then
Datal.Recordset.Movelast
End If
End Sub

Private Sub cmdsave_Click()
Datal.Recordset.Update

End Sub

Step 4: Save the project and run the form.

3.

Figure 5.9

ADO Data Control

Another database access control in Visual basic is the ActiveX Data
Object Data Control (ADODC). This control lets you access data in
a database server through any OLE DB provider. ADO gives you a
consistent interface for working with a wide variety of data sources
from text files to ODBC relational databases. This control is similar
to Data control which we have discussed in the above section. ADO
Data Control consists of three objects which are necessary to
establish connection. :

1. Connection String: Establish the connection by setting the
ConnectionString property.

2. Data command: It defines access to database objects such as
Tables, stored procedures or SQL queries.

3. Recordset: Specify how to derive a Recordset by setting the
RecordSource property.

ADO is OLE support object. OLEDB is a set of COM interfaces that
provide applications with uniform access to data stored in different
types of data source. ADO can be used to access unstructured data.

ActiveX data control by combining with data bound control like DataGrid or Bound Control can
build quick interface for working with a database.

The difference between Data control and ADO is that the DC uses Data AccessObjects technology to
connect to a database, whereas ADO uses.

ActiveX DataObjects, which is a newer technology and generally regarded as better than DAO. It is
advisable to use ADO technology as it is newer and better than DAO.

The detailed steps are as follows:

Step 1: Add the Microsoft ADO DataControl 6.0 (OLEDB) from the Project — Components menu

dialog box, (as shéwn in the Figure 5.10). Now you can see the ADO Data Control icon in the
VB toolbox.

Figure 5.10: Adding ADO data Control

Step 2: Display ADO Data Control on the form (Figure 5.11).

Figure 5.11: ADO data control on the form

Step 3: Change the Name and Caption property of the ADO control.
Step 4: Now follow the step 5-9 to set the connectionString property.

Step 5: Right click the ADO control and select the last option i.e. Properties. This will open the
properties page of the ADO control. (Figure 5.12)

king with Database

Figure 5.12: The first and only Property Page dialog box for the ADO Data Control’'s Connection string
property ~

As Source of Connection, choose one of the following three options

a. Use Data Link File: If you choose this option, you will be able to click the Browse
button to specify an existing *. UDL file.

b. Use ODBC Data Source Name: This option enables you to choose an existing
ODBC DSN from the drop-down list, or you can create a new DSN by clicking the
New button.

c. Use Connection String: This option allows you to click the Build button to bring up

the Data Link Properties tabbed dialog box.
In our case we will select third option i.e. Use Connection string and click on the Build. .
button. This will open the Data Link Properties Page. On the Provider tab of the Data Link
Properties tabbed dialog box, choose an OLE DB data provider, such as Microsoft Jet 3.51
OLE DB (Figure 5.13).

SRS S
Figure 5.13

Step 6:

Step 7:

Step 8:

Step 9:

The Connection tab of the Data Link Properties tabbed dialog box selects the database
name. In our case we will select Access database (Figure 5.14). Select BIBLIO.MDB
database which is available with VB6.

Figure 5.14: Setting connection through Jet provider

Now you have built ConnectionString; Click OK to accept it. You can check the
connection by clicking Test Connection button. If every thing is ok it displays one message
“Test Connection Succeeded”. This means you have successfully established the
connection.

Now in the ADO Data Control's Properties window, select the RecordSource property.
Select the command type from the list given with command Type (the list displays the
different options like adCmdUnknown, adCmdText, adCmdTable, adCmdStoredProc).
(Figure 5.14) In this example select adCmdTable. (If you select adCmdUnknown or
adCmdText command types you need to write specify SQL query to access records
whereas in case of adCmdStoredProc select the stored procedure if it is.)

The Select Table or Procedure name list box automatically displays the table list available
in the database. In our example we have selected VB6 BIBLIO.MDB database. Therefore
the list will show all the tables available in this database. Select Authors Table.

King with Database

Figure 5.15: property page dialog box for ADO control

Step 10: Click OK to close the RecordSource dialog box. This way you have set the ADO Data
Control to a Recordset, now you can bind VB controls to the ADO Data Control, as we
have discussed in the above section in data control.

Figure 5.16

Step 11: Design the form as shown in the Figure 5.16. Write the following code.
Private Sub cmdAdd Click ()
Adodcl .Recordset .AddNew
Text2.SetFocus
End Sub
Private Sub cmdDelete Click ()
Ans = MsgBox ("Are you sure You want to delete the record?",
vbYesNo, "Note")
If Ans = vbYes Then
Adodcl.Recordset.Delete
Adodcl.Recordset . MoveNext
If Adodcl.Recordset.EOF Then
Adodcl.Recordset.MoveFirst
End If

End If
End Sub
Private Sub cmdFirst Click(Index As Integer)
Adodcl.Recordset.MoveFirst

End Sub
Private Sub cmdLast Click()
Adodcl.Recordset.Movelast
End sub
Private Sub cmdnext Click ()
Adodcl.Recordset.MoveNext
If Adodcl.Recordset.EOF Then
Adodcl.Recordset.MoveFirst
End If '
End Sub
Private Sub cmdPrev_Click(Index As Integer)
Adodcl.Recordset.MovePrevious
If Adodcl.Recordset.BOF Then
Adodcl.Recordset.Movelast
End If
End Sub
Private Sub cmdSave_Click ()
Adodcl.Recordset.Fields ("Au ID") = Textl.Text
Adodcl.Recordset.Fields ("Author") = Text2.Text
Adodcl.Recordset.Update
End Sub -

Step 12: Save the project and check all the operations written for the buttons.

3.1 Connecting with Oracle

In the previous session we have discussed how to connect to the MS access database in VB6 and
perform different operations. Now we will see how to establish connection with Oracle. There are
two ways to get connected with oracle and get the records. One is through ADODC control and other
is without ADO control i.e. through coding. Here in the following session we will discuss both the
ways of connecting to Oracle. Since we need User DSN (Data Source Name) in both the cases first
we will understand how to create Data Source Name.

If you are connecting to SQL Server you'll need DSN. ODBC has three different types of DSNs:
1. User DSN

2. System DSN
3. FileDSN

orking with Datetess

Each DSN category serves a specific purpose and has a specific scope:

1.

User DSN: A user DSN is for a specific user. If you create a user DSN under user account, no
other user can see it or use it. If you need a connection to a data source that only you should
use, create auser DSN. - C

P
¥

System DSN: A system DSN 1s seen by the entire system. Any user, process or service can
see it. If you need a data source connection that should be seen more than just your user
account, choose to use a system DSN.

File DSN: A file DSN is the connection settings written to a file. A file DSN is useful if you
want to distribute a data source connection to multiple users on different systems without
having to configure a DSN for each system. ' '

Here we will see how to create User DSN, but the process is basically the same for a file or system
DSN. The only difference with a file DSN is you'll be prompted to save the DSN.

Follow the steps given below:

Step 1: Open the Control Panel — Select Administrative Tools — Open the Data Sources (ODBC)

it will popup one window where you can choose appropriate DSN you want to create. Here
we will select User DSN Tab. Click on the Add... button as shown in the following figure.

Figure 5.17

Figure 5.18

SRR G e Sdaise it

Figure 5.19

Step 2: Now select the proper driver. Since we are connecting to oracle data base we will choose
Oracle in OraHome92 driver. As shown in the following figure. And select Finish Button
to end the process. '

Figure 5.20

Step 3: Once you select the driver it will ask you to give some name to your DSN. Here “MyDSN
“is the name of our User DSN. Now Click Test Connection Button to verify the
connection. It will ask for Service Name, User Name and Password. Once you give that
value select OK button. It shows the “Connection Successful” message box. If this message
box is displayed it means you have successfully created User DSN. And now you can
use it.

with Database

Figure 5.21

Figure 5.22

Figure 5.23

Now we will discuss the ADO Data Control connectivity without using ADO Data Control. In this
session, we will create an ADO Connection Object and then use an ADO Command Object to return
the results of a query to an ADO Recordset object and without the ADO Data Control we'll populate
the records in a DataGrid. -

Follow the steps given below:

1. In order to use ADO Objects we have to set a reference to the ADO Object Library. To add a
reference, select Project — References from the Visual Basic Menu, then select Microsoft
ActiveX Data Objects 2.6 library. Object libraries do not appear in the components as they do
not have visible interface. Click on Ok button.

Figure 5.24

Figure 5.25

2, Now we will add Data Grid control to our form. Select Project — Components menu and
select Microsoft DataGrid Control 6.0. Click on Ok button.

Figure 5.26

Figure 5.27

3. Add the DataGrid control on your form and place the following code on the form load event.
Save the form and run.

Figure 5.28

Private Sub Form_Load ()
Dim conn As New ADODB.Connection
Dim rs As New ADODB.Recordset
Dim strSQL As String
strSQL = "SELECT * FROM DEPT"
Set conn = New ADODB.Connection
conn.Open "Provider=MSDAORA.1l; User ID=scott; Data
Source=mca;Persist Security
Info=False; password=tiger"
rs.CursorType = adOpenStatic
rs.CursorLocation = adUseClient
rs.LockType = adLockOptimistic
rs.Open strSQL, conn, , , adCmdText
Set DataGridl.DataSource = rs

ind Sub

Let’s understand the code.

i

ii.

iii.

iv.

These first two lines of code declare two object varidbles. The first is an ADO Connection

- Object and second is an ADO Recordset Object

Dim conn As New ADODB.Connection
Dim rs As New ADODB.Recordset

These declarations will build the Recordset which is a virtual representation of an actual
Oracle table in our Database.

Dim strSQL As String

-strSQL variable in the above line is a String variable that we will use to store the SQL

statement used to build our Recordset. Once you declared the strSQL variable, you can assign
a SQL statement to it. It is used to retrieve every record from the DEPT table in Oracle
database.

strSQL = "SELECT * FROM DEPT"

-The next statement will open ADO Connection. We do that by executing the Open method of

our Connection Object. The Open method requires four parameters: the Provider name, the
Data Source (or HostName), the User ID and the Password of the database.

conn.Open "Provider=MSDAORA.1; User ID=scott;

Data Source=mca;Persist Security

Note: The Connection String that the ADO Data Control wizard built for us could be used to
open a Connection in code. You can use the ADO Data Control wizard to build Connection
Strings, and then copy and paste them into the code window. Before we build the Recordset
object we need to adjust three properties of the Recordset object, the CursorType,
CursorLocation and LockType.

rs.CursorType = adOpenStatic

rs.CursorLocation = adUseClient

rs.LockType = adLockOptimistic

rs.Open strSQL, conn, , , adCmdText

We now have a Recordset object built containing all of the data in the DEPT table of Oracle

database. We can use the Set statement to assign the Recordset object to the DataSource
property of DataGrid. '

' Set DataGridl.DataSource = rs

If we now run the program, the code in the Load Event procedure of the form executes.
A Connection object is created, initiating the Connection to Oracle Database. Then a
Recordset object is created, retrieving DEPT Table’s records. Finally, the DataSource property
of the DataGrid is set to point to the Recordset object. The following form is the result of this
entire process.

Figure 5.29

This result we have achieved without using ADO data Control. You can also use ADO data control
and display data.

Follow the steps given below:

1. Select Project - Component Menu and Select Microsoft ADO Data Control 6.0. This will add
the ADO control on the tool box as shown in the following figure.

3

Figure 5.30

2. Now display the Data Grid and ADO control on the form. The screen should look like
following figure.

Figure 5.31

3. At this step you need to set some properties of the Data Grid and ADO control. First we will
set ADO data control properties. Right click on ADODC control to open ADODC property

page.

Pioprt

Figure 5.32

4. You can see three different sources of connection on the General Tab on the Property page.
Select Use Connection String option button and click on the Build... button to create
connection string. After clicking on Build button VB will open Data Link Property page as
shown in the following figure. It will ask to choose proper driver Here we will select “Microsoft
OLEDB provider for Oracle” drivers. Then click on the Next button.

Figure 5.33

5. Now enter Server name, User Name and Password to get connection with oracle. Then click

on Test connection button to verify the connection. If the connection is created successfully it
shows the “Test Connection Successful”’ message box.

Figure 5.34

Figure 5.35

6. You have successfully created connection with oracle. Your connection string has been
created now. Click on Ok button to return to ADODC property page. You can see the string in
the text box with the Use Connection String option button. '

Figure 5.36

7. Now we have access to oracle database. Select RecordSource tab on the Property page. This
will ask for the command Type. Select 2-adCmdTable command type so that you can see the
list of oracle tables created in your account.

Figure 5.37

8. Once you select Table command type, all the available table will be listed in the Table or
Stored Procedure Name list box. As shown in the following figure. Select any table. In this
example I have selected DEPT table and click on the Ok button to finish the procedure.

Figure 5.38

Working with Database

9. Now we have to set the properties of Data grid control. We have already displayed Data Grid
control on the form. Set the Data Source property of Data Grid control. When you select the
property it will automatically gives the list of available data source control list on the form.
In this example there is only one data source control available on the form i.e. Adodcl. You
need to select that option. Save the project and check the operations. It displays the result as
shown in the following figure.

Figure 539

3.2 Report Generation

Report is nothing but the formatted and organized presentation of data. Most database management
systems include a report writer that enables you to design and generate reports. Data Report facility
in Visual Basic allows you to design professional reports in VB. The Data Report Designer creates -
hierarchical reports. These are the most common type of database report; the reports designed in
Data report have headings, subheadings, details, and summaries organized in a hierarchical manner.
A Data Report is similar to a VB form in that it has a visual designer and a code module. Using the
visual designer, you can divide the report into two or more sections, each with its own headings.
Each section can contain controls to display the report details. The design of the details sections is
simplified by drag-and-drop functionality. The available controls are distinct from VB controls but
have similar functionality. In particular, the Function control lets you easily perform calculations on
field data (sum, average, minimum, and maximum) and display the results as the report is generated.
Headers and footers can be defined for the report as a whole and for each page of the report. The
Data Report Designer is a very useful facility of VB. Its not suitable for every type of report, but
when it fits your needs, it can save you a tremendous amount of time. VB Data report designer is
very much similar to Microsoft Access. :

To understand the data report we will discuss one example. You just

need to follow the instruction given below: ' #
The Data Report Designer builds reports from database tables. The
example in this chapter uses the BIBLIO.MDB database, which is
included in the main Visual Basic directory.

-Step 1: From the Project menu, select Data Environment option.

s b Mt Fanvnst Bass.

Figure 5.40

Step 2: To make a connection to the BIBLIO.MDB database, right-click Connectionl and select
Properties from the popup menu.

Step 3: To connect with Access database, select Microsoft Jet 3.51 OLE DB Provider and then
click next.

Figure 5.41

Step 4: Enter or select the database filename to use for this connection. Here we will select
" BIBLIO.MDB database which comes with VB. For Biblio Database no need to set any

security option. If you were using another database that had security, you would have to
specify a user ID and password.

g with Databese

Figure 5.42

Step 5: You can verify the connection by clicking the Test Connection button. If you receive a
message indicating a successful test, click OK to continue. Otherwise, go back and make
sure that you followed the steps correctly.

Figure 5.43

Step 6: Rename the Connectionl item, click the Connection] item and wait a while and then
rename the connection with some meaningful name such as conBiblio. Renaming
Connection item helps you when you have many Connections in your data environment.
By the name you can easily identify that which data base is connected with the connection
item.

Step 7: Same way you can also rename Data Environment also. If you have multiple data
environments in your project, it helps you to identify the control.

~ Now you have data environment created successfully. Save your work. Yet we have not
finished with reports. With the data environment created, you can now create the query that
will retrieve Author information from the database.

Step 8: Now Seléct Project — Add Data Report option. The data report screen looks like following
screen shot.

Figure 5.44

Step 9: Give some meaningful title to the report. This title can be both in the Report Header, and
on the first page of the report, or in the Page Header and on the top of every report. Add
RptLabel control to create a title for your report, or simply draw the RptLabel control
where you want it and set the Caption property to change the text that should be displayed.

You can also set the Caption property of the Report itself by using the Properties window
when the Report is selected. Also, any blank space you leave around the eontrols will be
repeated whenever the report is shown, so be sure to place the controls correctly and to
close up any blank space around them. You can add other labels or graphics to the report as
you want.

Step 10: Right-click Commands and select 4dd Command from the popup menu. The Data
Environment Designer will add a new command to the environment. Right-click it and
select Properties. It will open command properties page (Figure 5.45). General Tab is
selected. Give the command a useful name, such as cmdAuthor.

Figure 5.45: Command property page

Programming in Visuat Ba

Step 11:

Step 12:

Step 13:

Step 14:

lgingwlth Database

Select the connection conBiblio from the Connection drop-down list. Now select source of
data. You can add table from database object dropdown list and then select the precise
table name from object name list. You can use the SQL Builder if you want to create
complex joins and don't want to type the SQL yourself. SQL statement helps you to write
SQL query, so that you can retrieve your data.

Click OK. Now after setting command item your screen should look like following screen
(Figure 5.46). If you explore command i.e. cmdAuthor it will show you all the fields of
author table. Be sure to save your work because you have now finished building your data
connections.

Figure 5.46

We have already added Data Report. Now set the following properties of the Data Report.

Data Member: cmdAuthor (Command name)
Data Source: DataEnvironment] (DataEnvironment name)

If you don't set these properties, you'll receive errors when you try to run the report.

To add data to the report, take a field from the Data Environment Designer window, such
as Au_ID, and drag it to the Detail section of your report. VB will automatically draw a
RptTextBox, along with a RptLabel control on the report. The Detail section is very narrow
because any blank space in this section will be repeated for every row in the report. You
can decorate your report if you wish. Use line and shape control to elaborate your report.
With line control you can draw line. After dragging all the fields in to the data report the
screen should look like Figure 5.47.

Figure 5.47

Step 15: To make this report column-based, drag the RptLabel into the PageHeader section. Place
the RptTextBox beneath the RptLabel but leave the RptTextBox in the Detail section.
Repeat this process for all the fields. Now your report should look like Figure 5.48.

Figure 5.48

Step 16: To include a page number and total number of pages, create page footer. This is very easy
to do with RptLabel control, which supports a number of substitutions so that you don't
have to write code to put page numbers in your report. The RptLabel control supports these
substitutions. '

Step 17: Now that the report is complete you can run it. The report is run just like any other form in
your project. Choose Properties from the Project menu and use this report as your startup

forking with Database

form. Or you can display report using code. Use the standard Show method. When you run
your program, your report will be displayed as shown in Figure 5.49.

You can write following code for the button to run your report.

Private Sub Commandil Click ()
DataReportl.Show
End Sub

Figure 5.49

Figure 5.50

4. Developing ADO Appl
and Coding

In this example we will create a small tutor. This tutor has one database and five forms. It is assumed
access or Oracle. We have already discussed the
process to connect oracle and access database to the visual basic using ADO data control.

that you know how to create database in Microsoft

Follow the steps given below to create your tutor

ication through ADODC

1. Create the following tables in MS Access or oracle database.
Chapter
Cno Number
ChapName | Text
Exam
Queno | Number
A Text
B text
C
D
Ans
UAns
Topics
No Number
Topic Text
Description | text

the forms as shown below:

Open Visual Basic IDE and add four forms to your project. Design and write the code for all

Figure 5.51: About Form

Private Sub cmdOk_Click ()
Unload Me
End Sub

Private Sub Form Load()
Me.Left = 1500
Me.Top = 2000

End Sub

Figure 5.52: Main Form

- Dim gry As String

Private Sub cmdAbout_Click()
frmAbout.Show

End Sub

Private Sub cmdExit Click()

End

End Sub

Private Sub cmdNext Click()

On Error Resume Next
Adodcl.Recordset .MoveNext
1blChName.Caption = Adodcl.Recordset.Fields (1)
Start

End Sub

Private Sub cmdPrevious_Click()

On Error Resume Next
Adodcl.Recordset.MovePrevious
1blChName.Caption = Adodcl.Recordset.Fields (1)
Start

End Sub

Private Sub cmdTest_Click{)
frmTest.Show

End Sub

Private Sub Form_Load ()

Adodcl.Refresh
1blChName.Caption = Adodcl.Recordset.Fields (1)

Start

End Sub

Private Sub Start()
qgry = "select * from Topics where ChNo=" &

Adodcl.Recordset.Fields(0) & "" .
Adodc3.RecordSource = gry
Adodc2.RecordSource = gry

Adodc2.Refresh

Adodc3.Refresh

lstTopics.Clear

txtDescription.Text = "*

While Not Adodc2.Recordset.EOF
1stTopics.AddItem Adodc2.Recordset.Fields (1)
Adodc2.Recordset.MoveNext

Wend

End Sub
Private Sub lstTopics_Click()

Dim ¢, 1 As Integer

¢ = lstTopics.ListIndex + 1

Adodc3.Recordset.MoveFirst

For i =1 Toc - 1
Adodc3 .Recordset .MoveNext

Next

txtDescription.Text = Adodc3.Recordset.Fields(2)

End Sub

Private Sub txtDescription_GotFocus ()
lstTopics.SetFocus

End Sub

Figure 5.53: Source Form

Private Sub cmdOk_Click()
Unload Me
Unload frmTest

End Sub

forking with Database

Private Sub Form Load()
On Error Resume Next
Me.Left = 3000
Me.Top = 3000
1blQueAttemped. Caption frmTest.1blQNol.Caption
1blCorrectaAns.Caption = frmTest.1lblScorel.Caption

lblPerformance.Caption = CInt(frmTest.lleNol.Caption)
* 100 / CInt (frmTest.lblScorel.Caption) & *

End Sub

Figure 5.54: Test Form

Dim score As Integer
Private Sub Display_Data ()
1blQuestion.Caption = ADo.Recordset.Fields (5)
IblQNo1.Caption = ADo.Recordset.Fields (0)
OptA.Caption ADo.Recordset.Fields (1)
OptB.Caption ADo.Recordset.Fields (2)
optC.Caption ADo.Recordset.Fields (3)
optD.Caption ADo.Recordset.Fields (4)
End Sub
Private sub ADo_WillMove (Byval adReason As ADODB. EventReasonEnum,

adStatus As ADODB.EventStatusEnumn, ByVal pRecordset As
ADODB.Recordset)

End Sub
Private Sub cmdAbout Click ()

frmaAbout . Show
End Sub
Private Sub cmdExit Click ()

If (optA.value = True And OptA.Caption = answer) Or (optB.Value =
True And optB.Caption = answer) Or (optC.Value = True And
OptC.Caption = ans) Or (optD.Value = True And optD.Caption = answer)
Then score = score + 1

lblSco:el.Caption = gcore

frmScore. Show

]

1l

Unload Me
End Sub
Private Sub cmdNext Click()
Dim answer As String
answer = ADo.Recordset.Fields(6)
If (optA.value = True And OptA.Caption = answer) Or (optB.Value = True

And optB.Caption = answer) Or (optC.Value = True And optC.Caption = ans) Or

{cptD.Value = True And optD.Caption = answer) Then score = score + 1
IblScorel.Caption = score
ADo.Recordset.MoveNext
If ADo.Recordset.EOF Then ADo.Recordset.MovelLast
Display_Data
End Sub
Private Sub Form Load()
score = 0
1blScorel.Caption = score
ADo.Refresh
ADo.Refresh
Display Data
End Sub

Figure 5.55: Wel-Come Form

Private Sub Timerl Timer ()
Randomize
1blTitle.ForeColor = QBColor (Rnd * 5)
Randomize
lblname.ForeColor = QBColor (Rnd * 5)
End Sub

Solved Programs -

1.

Draw an interface and code for the following. Also give
property setting for appropriate controls. Write a
program in VB to store a data into the database with the

with Database

Programmir

fields’ rollno, name, marks I, marks 2, marks 3. Calculate
average.

Solution

STUDENT RESULT

RolNo []
‘Name | |
Mark3 !::] Average | |

| Calculate | | Save | [Clear |

Step 1: Create New form.

Step 2: Display the following controls on the form and set the properties of the control as shown in
the following table:

Label1 caption STUDENT RESULT
Font size 18
Font Bold True

Label2 Caption Roll No

Label3 Caption Name

Label4 Caption Mark1

Label5 Caption Mark2

Label6 Caption Mark3

Text1 Name Txtrno

Text2 Name txthame

Text3 Name Txtm1

Text4 Name Txtm2

Texts Name Txtm3

Command Button1 | Name cmdCalculate
Caption Calculate

Command Button2 | Name cmdSave
Caption Save

CommandButton3 | Name cmdClear
Caption Clear

Option Explicit

Dim avg as Integer

Private Sub cmdCalculate Click ()
Avg = (ml+m2+m3) / 3
Label7 .caption = avg

End Sub

Private Sub cmdSave Click()

ADODB.AddNew

ADODB.Recordset.Fields ("RNo") = txtno.Text
ADODB.Recordset.Fields ("name") = txtname.Text
ADODB.Recordset.Fields ("markl") = txtml.Text
ADODB.Recordset.Fields ("mark2") = txtm2.Text
ADODB.Recordset.Fields ("mark3") = txtm3.Text
ADODB.Recordset.Fields ("avg") = avg
ADODB.Recordset.Update
End Sub

Private Sub Form Load ()
Dim cnn As New ADODB.Connection
Dim rs As New ADODB.Recordset
Dim strsgl As String
Set cnn = New ADODB.Connection

cnn.Open "Microsoft.Jet.OLEDB.3.51;Persist Security Info=False;Data
Source=C:\Documents and Settings\Administrator\My Documents\TeacherDB.mdb"

rs.CursorType = adOpenDynamic
rs.CursorLocation = adUseClient
rs.LockType = adLockOptimistic
rs.Open strsgl, cnn, , , adCmdText
End Sub
Private Sub cmdClear Click()
Txtno.text = “~
Txtname.text = #”
Txtml.text = "~
Txtml.text un
Txtml.text = “7
End Sub.

2. Write a program in VB to accept product details and store
it into the database and display amount, The database
fields are: Itemno, Itemname, Rate, Quantity.

H

Solution

Option Explicit

Dim amount as Integer

Private Sub cmdCalculate Click()
amount = rate * gty
Labell.caption = amount

End Sub

Private Sub cmdSave Click()
ADODB.AddNew
ADODB.Recordset.Fields ("ItemNo") = txtno.Text
ADODB.Recordset.Fields ("Itemname") = txtname.Text

ADODB.Recordset.Fields("rate") = txtrate.Text
ADODB.Recordset.Fields ("gty") = txtqg.Text
ADODB.Recordset.Fields ("amount") = labell.caption

End Sub

Private Sub Form Load()

th Database

Dim cnn As New ADODB.Connection
Dim rs As New ADODB.Recordset
Dim strsgl As String
Set cnn = New ADODB.Connection
cnn.Open "Microsoft.Jet.OLEDB.3.51;Persist Security
Info=False;Data Source=C:\Documents and
Settings\Administrator\My Documents\ProductDB.mdb"
Is.CursorType = adOpenDynamic
rs.CursorLocation = adUseClient
Irs.LockType = adLockOptimistic
rs.Open strsqgl, cnn, , , adCmdText
End Sub
Private Sub cmdClear Click()

TXtno.text = #”
Txtname. text = #~

Txtrate.text = “~
Txtgty.text = #»
End Sub -

3. Write a program to accept the details of students from
user and store the details along with total and percentage
into the database. (Don’t use Standard Control) Students
having fields stud_rollno, stud name, stud_markl,
stud_mark2, stud_mark3.

Solution :
Step 1. Create New form. _
Step 2: Display the following controls on the form and set the properties of the control as shown in

the following table:
Label1 Caption STUDENT RESULT
Font size 18
Font Bold True
Label2 Caption Roll No
Label3 Caption Name
Label4 Caption Mark1
Label5 Caption Mark?2
Labei6 Caption Mark3
Text1 Name Txtrno
Text2 Name {xtname
Text3 Name Txtm1
Text4 Name Txtm2
Textd Name Txtm3
Command Button1 | Name cmdSave
Caption Save
CommandButton2 | Name cmdClear
Caption Clear

Option
Privat
AD
AD
AD
AD
ADO
ADO
AD
AD
End Su

Privat
Dim
Dim
Dim
Set

cnn.
False;
Docume

rs.
rs.cC
rs.L
rs.o
End Su
Privat
txt
txt
txt
txt
txt
End Su

Explicit
e Sub cmdSave_ Click ()

ODB.AddNew
ODE.Recordset.Fields("RNo”)=txtno.TeXt
ODB.Recordset.Fields ("name")=txtname.Text
ODB.Recordset.Fields("markl")=txtml.Text
DB.Recordset.Fields ("mark2")=txtm2.Text
DB.Recordset.Fields ("mark3")=txtm3.Text
ODB.Recordset.Fields ("avg")=avg
ODB.Recordset.Update

b

@ Sub Form_Load ()

cnn As New ADODB.Connection
rs As New ADODB.Recordset
strsgl As String

cnn = New ADODB.Connection

Open "Microsoft.Jet.OLEDB.3.51;Persist Security Info =
Data Source = C:\Documents and Settings\Administrator\My
nts\TeacherDB.mdb"

CursorType = adOpenDynamic

ursorLocation = adUseClient

ockType = adLockOptimistic

pen strsgl, cnn, , , adCmdText

b

e Sub cmdClear Click ()

no.Text = “*

name ., Text = *#*

ml.Text = "~

m2.Text = #~

m3.Text = “~

b

4. Write a program to accept the details of customer from

us

standard control). Customer having fields custid,

er and store that details in to the database. (Don’t use

custname, custaddress.

Solution

Privat
AD
AD
AD
AD
AD

e Sub cmdSave_Click()

ODB.AddNew

ODB.Recordset.Fields ("custid") = txtno.Text
ODB.Recordset.Fields ("custname") = txtname.Text
ODB.Recordset.Fields ("custadd") = txtadd.Text
ODB.Recordset .Update

End Sub

Privat

e Sub Form_Load()

Dim cnn As New ADODB.Connection

Dim rs As New ADODB.Recordset

Dim strsgl As String
Set cnn = New ADODB.Connection

cnn.Open "Microsoft.Jet.OLEDB.3.51;Persist Security Info=False;Data
Source=C:\Documents and Settings\Administrator\My
Documents\CustomerDB.mdb"

rs.CursorType = adOpenDynamic
rs.Cursorlocation = adUseClient

rs.LockType = adLockOptimistic
rs.Open strsqgl, ¢nn, , , adCmdText
End Sub

5. Write a VB program to accept the student details from
user and store the details into the database (don’t use
standard control) student having rollnos, name, class.

Solution

Dim C As New Connection

Dim R As New Recordset

Dim S As String \

Private Sub cmdAdd_Click()
txtRno.Text = "n
txtSname.Text = "V
txtClass.Text = w*
txtRno.SetFocus

End Sub

Private Sub cmdNext Click ()
R.MoveNext
If Not R.EOF Then

tXtRno.Text = R.Fields(0) .vValue
txtSname.Text R.Fields (1) .value
txtClass.Text R.Fields (2) .value
Else
MsgBox "No More Records!", vbInformation, "“Student"
End If
End Sub
Private Sub cmdPrev_Click()
R.MovePrevious
If Not R.BOF Then
txtRno.Text = R.Fields(0).Value
txtSname.Text R.Fields (1) .value
txtClass.Text R.Fields(2) .vValue

]

I

Else

MsgBox "No More Records!", vbInformation, "Student™”
End If
End Sub
Private Sub cmdSave_Click()
R.Close

S = "Insert Into studData Values(" & Val(txtRno.Text) & ",'" &
txtSname.Text & "', '" & txtClass.Text & "')"

R.Open S, C, adOpenDynamic, adLockOptimistic
S = "Select * From studData”
R.Open S, C, adOpenbDynamic, adLockOptimistic
If Not R.BOF And Not R.EOF Then
R.MoveFirst ‘
txtRno.Text = R.Fields(0) .Value
txtSname.Text R.Fields (1) .Vaiue
txtClass.Text R.Fields(2) .value
End If
MsgBox "Student record Added Successfully!", vbInformation, "Student"
End Sub

H

Private Sub Form_Load()
S = "Select * From studData"

C.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=E:\VBS1lipSol\Slip07\Ques-2\stud.mdb;Persist Security Info=False"

R.Open S, C, adOpenDynamic, adLockOptimistic
If Not R.BOF And Not R.EOF Then

R.MoveFirst
tXtRno.Text = R.Fields(0) .Value
txtSname.Text R.Fields (1) .value
txtClass.Text R.Fields (2) .Value

End If

End Sub

II

&/ PU Questions

[Apr.2013 — 4M] -

[Apr.2013 — 4M]
[Oct.2012 — 4M]
[Oct.2012 — 4M]
[Apr.2012 — 4M]
[Apr.2011 — 4M]

[Apr.2011 - 4M]
[Apr.2011 - 4M]
[Oct .2010 — 4M]
[Apr.2010 — 4M]

[Apr.2013 — 8M]
[Apr.2012 — 8M]

[Oct.2011 — 8M]

[Apr.2011 - 8M]

[Oct.2011 — 8M]

A S

~

10.

Explain briefly ADO control.
Write a short note on: Data Reports

“Explain ADO Data Control.

Write a short note on: Data Reports
Compare ADO and ADODC Controls.

Explain steps to connect MS - Access Database to ADO
Control.

Write short note on: Data Control

Write short note on: Data Reports in VB
Write short note on Popup Menu
Compare ADO and ADODC Controls.

Write a VB program to accept the student details from user and
store the details into the database (don’t use standard control)
student having rollnos, name, class.

Write a program to accept the details of customer from user
and store that details in to the database. (Don’t use standard
control). Customer having fields custid, custname, custaddress.

Write a program to accept the details of students from user and
store the details along with total and percentage into the
database. (Don’t use Standard Control) Students having fields
stud_rollno, stud_name, stud_mark1, stud_mark2, stud_mark3.

Write a program in VB to accept product details and store it
into the database and display amount. The database fields are:
Itemno, Itemname, Rate, Quantity.

Draw an interface and code for the following. Also give
property setting for appropriate controls. Write a program in
VB to store a data into the database with the fields’ rollno,
name, marks 1, marks 2, marks 3. Calculate average.

(/o
uision

Suggestive Readings:

10.

11.

12.

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata McGraw-
Hill.

Warner, Scott L. 1998.Teach Yourself Visual Basic 6. New Delhi: Tata McGraw Hill.
Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York: McGraw
Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6 Programming
Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0.Bangalore: WP
Publishers and Distributors (P) Ltd.

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi: BPB
Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6: How to
Program. New Jersey: Prentice-Hall.

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. NewDelhi:
Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New Delhi:
Prentice-Hall of India.

	449ba37a2431bc1f2806495c9c1aa9ed33e222a9c626f1fd86c9c6b88a563aeb.pdf
	2800e0c0d981c87cc2269cfba1e8a458349dedea9f29e9fa4b12e2b4f6115d38.pdf
	658a0adc36fdbcea3b4abbea838c3e1db3d06cbe10da9c26d89a56b766cb947a.pdf
	bf145d9692fe8ed7584e0fc559f691ed735fcb7ead504e8a199488aa1a770aa7.pdf
	Microsoft Word - Programming in Visual Basic BCA SEM-4

